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Chapter 0O

Introduction

What is mathematical modeling (or simply modeling)? Modeling is a process that uses
math to represent, analyze, make predictions, or otherwise provide insight into

real-world phenomena.

1. Define the problem statement:
(a) A concise statement of the problem will tell you what your model will measure
or predict.
(b) Focus and define subjective words (so that they are quantifiable)
(c¢) Explore with research and brainstorming.
(d) Brainstorm like you have access to any and all data.
(e) Assign a team member to record every idea.

(f) Visual diagrams can be a powerful tool to help structure.
)

(g) Keep an open mind.

2. Making assumptions: After defining the problem statement, you probably will find
that your problem is still too complicated. Sharpen your focus by making assumptions.
These basic conjectures allow you to reduce the number of factors affecting your model

helping you decide what is important.
(a) Assumptions come from brainstorming.

(b) Preliminary research will help you make assumptions.

(¢) In the absence of relevant data, it is reasonable to make (and justify) your as-

sumptions.
(d) Assumptions develop as you move through the modeling process.
3. Defining variables: The variables you need to develop your solution come from the

perspective of the problem statement. Dependent variables are often called outputs

that represent the information you seek. Independent variables, also known as inputs,



represent quantities you know the value of but may change. Fixed model parameters
represent constants that remain the same.
(a) Your problem statement will define the output.

(b) Initial brainstorming should give clues to independent, dependent, and fixed

model parameters.

(c) Keep track of the units of measurement you are using (because they can reveal

relationship between variables - dimensional analysis)

(d) You may need to do additional research or make new assumptions to find values

of parameters.
(e) Sub models or multiple models may be needed to reveal certain model input.

4. Getting a solution: use any math tools and softwares to find a answer to the model

proposed in the previous steps.

5. Analysis: When one gets a solution of a proposed model, one needs to check the
following:
(a) Is the magnitude of the answer reasonable?
(b) Does the model behave as expected?

(c) Can one validate the model?
You may also determine if the model is acceptable by doing the following:

(a) List the model’s strengths and weaknesses/limitations.
(b) Determine your model’s sensitivity to parameters and assumptions.

(c¢) Consider potential improvements.



Chapter 1

Dimensional Analysis ( & % /%)=t & 47 )

One of the basic techniques useful in the early stage of modeling problems is the analysis
of the relevant quantities and how they relate to each other in a dimensional way. The
relationship among the variables must have dimensional homogeneity which simply
says that variables with different dimensions cannot be identical (or in short, apples cannot

equal oranges). These observations form the basis of the subject known as dimensional

analysts.
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Remark 1.1. We distinguish the word unit ( # =) from the word dimension (& % /%]
=X ) . By units we mean specific physical units like seconds, hours, days, and years; all of
these units have dimensions of time. Similarly, grams, kilograms, pounds, and so on are
units of the dimension mass.
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For a given physical quantity ¢, we use [q] to denote the dimension of ¢, and use L, M,
T to denote the dimension of length, mass, and time, respectively. A quantity which does

not change after changing unit of every fundamental dimension is called dimensionless.
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1.1 Dimensional Methods

The cornerstone result in dimensional analysis is known as the Pi theorem which states
that if there is a physical law which provides a relation among several dimensioned physical
quantities, then there is an equivalent law that can be expressed as a relation among certain

dimensionless quantities.

Question: What does it mean by a relation among several dimensioned physical quantities?

Example 1.2. The air resistance F' a biker encounters appears to be related to the speed

v and the cross-sectional area A, as well as the air density p. Therefore,

F = ¢(:07 Aa U)

or equivalently,

f(vavA’U) :F—¢(p,A,U) =0.

Example 1.3. Suppose that we want to compute the yield of the first atomic explosion
after viewing photographs of the spread of the fireball. In such an explosion a large amount
of energy FE is released in a short time in a region small enough to be considered a point.
From the center of the explosion a strong shock wave spreads outwards; the pressure behind
the shock is on the order of hundreds of thousands of atmospheres, far greater than the
ambient air pressure whose magnitude can be accordingly neglected in the early stages of
the explosion. It is plausible that there is a relation between the radius of the blast wave
front r, time ¢, the initial air density p, and the energy released E. Hence, we assume there
is a physical law

f(t7r7p7E>:O

which provides a relationship among these quantities.

Suppose that m quantities ¢, ga, - - - , ¢, are dimensioned quantities that are expressed
in terms of certain selected fundamental dimensions Lq, Lo, --- , L,, where n < m. The

dimensions of ¢;, denoted by [¢;], can be written in terms of the fundamental dimensions as
[Qi] — L(llliLg% . Lng

for some exponents ay;, ag;, - -+, an;. If [¢;] = 1, then ¢; is said to be dimensionless. The

n X m matrix

aixz - Aim
a1 - A2m

(1.1)
(0775 B Anm

containing the exponents is called the dimension matrixz. The entries in the i-th column

give the exponents for ¢; in terms of the powers of Ly, -, L,.



Any fundamental dimension L; has the property that its units can be changed upon
multiplication by the appropriate conversion factor A; > 0 to obtain L; in a new system of
units. We write L; = M\;L;. The units of derived quantities ¢ can be changed in a similar
fashion. If

lq) = LY LS - Ly (1.2)
then
q= AR Mg (1.3)

gives ¢ in the new system of units.

Definition 1.4. Let ¢1,¢0, - , ¢ be dimensioned quantities. The physical law

f(Q17Q27"' 7Qm) =0 (14)

is said to be unit free if for all choices of real numbers A\, ---, A, with A\; > 0 for all
1 <i<n, wehave f(q1, -+ ,qn) = 0 if and only if f(q, - ,Gn) = 0, where ¢; and g, are
related by (1.3) if ¢; obeys (1.2).

Theorem 1.5 (Pi Theorem). Let

fla, g2, 5 qm) =0 (1.5)

be a unit free physical law that relates the dimensioned quantities q1,qo, -+ ,qm. Let Ly, Lo,

-+, L, where n < m, be fundamental dimensions with
[Qi]:Lllllingi"'LZm7 izlv"'am7

and let v = rank(D), where D is the dimension matriz given by (1.1). Then there exist (m—r)
independent dimensionless quantities my, mo, -+ , Ty, that can be formed from q1,- - - , ¢ and

the physical law (1.5) is equivalent to an equation
F(ﬂ-la"' 77Tm—7") =0

expressed only in terms of the dimensionless quantities.

Proof. Let D = [a;j]nxm be the dimension matrix and m = ¢7'" ¢35 - - - g5 be a dimensionless
quantities. Then with a denoting the vector (aq, -+, a,,)T, we have

Da=0,

where 0 denotes the zero vector in R"™. Since rank(D) = r, without loss of generality we
can assume that the first » column of D is linearly independent; thus aq,- -, a, can be

expressed in terms of (@41, Qpya, -+, Q). In fact,

D(:1:r)a(l:r)=-D(,r+1:ma(r+1:m),



where D(:,i : j) denotes the matrix formed by the i-th to j-th columns of D, and a(i : j)
denotes the (column) vector formed by the i-th to j-th components of a. Assume that the

vector a(1 : r) is given by

aq bii bz - bl(m—r) Qi1
Qg _ bor bay - b2(m—r) Qg2
Ay brl br? to br(mfr) Am

Then 7;, 1 < j < m —r, defined by (with o,y = dy; for 1 <€ <m —r)

b1y by by
T =q1 02 4" Grtg

are dimensionless quantities (so change of units will not change the value of 7;). Define

G(le e, T, 77rm—r)

7b'r1 _b12 *er 7b1('m,77‘) .

— 7b7"mfr
= flq, qa, s Gy Gy g g R g Ty =y

. qr
Then G(q1, - ,qr, 1, Tm—r) = 0 if and only if f(q1, - ,¢n) = 0. Moreover, since
flar,q2, - @) = 0 is unit free, G(q1,- -+ ,¢r, 71, , Tm—r) = 0 is unit free.

Now, since G(q1, " ,qr,T1,"* ,Tm—r) = 0 is unit free, for any choice of conversion

factors A\q,--- , A, > 0 and

— ai;\ a2, i .
G=MN"N7 N, 1<j<r,

we must have G(q1,- -+ , G, T, ,Tm—r) = 0. Since D(:,1 : ) consists of r linearly inde-
pendent column vectors and n = r, there exist Ay, -+, A\, (might not be unique if n > r)
such that
air Q21 - QApl log Ay —log ¢
Qiz Q22 - Qp2 log Az —log ¢
. . = . (1.6)
a1, Qop <+ Apy log A\, —log g,

Choosing Ay, - -+, A, satisfying (1.6). Then in the new system of units g; = 1; thus in the
new system of units,
F(ﬂ-lf"77Tmfr>EG(17"'7177T17"'77Tm77"):0' t

Example 1.6 (Example 1.2 - revisit). Since
[F] = MLT™2, [p|=ML™®, [Al=L? wv=LT",
the dimension matrix (with the order of dimension 7', L, M) is

-2 0 0 -1
1 -3 2 1
1 1 0 0



The rank of the dimension matrix above is 3; thus there is only one dimensionless quantity
that can be formed from F,p, A,v. Suppose that 7 = F®p*A®y* is a dimensionless

quantity. Then
aq

2 0 0 -1 0

1 =32 1|1% =lo

1 1 0 0| 0
Oy

2. Therefore, an equivalent physical

which gives a dimensionless quantity m@ = Fp~tA~tv~
law is given by g(7) = 0 which shows that 7 = k (or equivalently, F' = kpAv?) for some

(dimensionless) constant k.

Example 1.7 (Example 1.3 - revisit). Since

]=T, [l=L, [pl=ML?, E=MLT,

The rank of the dimension matrix above is clearly 3; thus there is only one dimensionless
quantity that can be formed from r,r, p, E. Suppose that m = t*1r®2p* F* is a dimension-

less quantity. Then

10 0 -2 31 0

01—32a2:0

00 1 1 3 0
Oy

which gives a dimensionless quantity © = t>r~°p~!E. Therefore, an equivalent physical
law is given by F(w) = 0 which shows that 7 = k (or equivalently, t*E = kpr®) for some

(dimensionless) constant k.

Example 1.8. At time ¢t = 0 an amount of heat energy e, concentrated at a point in space,
is allowed to diffuse outward into a region with temperature zero. If r denotes the radial
distance from the source and t is time, the problem is to determine the temperature u as a
function of r and t.

Clearly the temperature u depends on ¢, r and e. Moreover, it is “reasonable” that the
“thermal diffusivity” k with dimension length-squared per time and the “heat capacity” ¢
of the region, with dimension energy per degree per volume, play a role. Therefore, the
physical law is given by

flt,ru,e k,c)=0.

This physical law has 6 dimensioned quantities



The dimension matrix (with the order of dimension 7', L, ©, F) is

1000 -1 0
0100 2 -3
0010 0 -1
0001 0 1

It is easy to see that the dimension matrix has rank 4; thus by the Pi theorem there
are 2 dimensionless quantities that can be formed from t,r, u,e, c, k. To see how we form

dimensionless quantities, we assume that the combination
[t“lr”ua?’ea“ kaf’caﬁ] =1.

In other words,

(05} 0
1000 -1 0 Q9 0
0100 2 =3f|ag| _|O
0010 0 —=1|asl 1|0
0001 0 1 Qs 0
which shows that a; = a5, a3 = —ay = a4, and as = —2a5 + 3ag. Therefore, two
dimensionless quantities can be formed (using (avs, ) = (—%, O) or (g, 1)) as
T = L and Tg =— E(k’t>%

Vkt e

and an equivalent physical law is given by F'(m,m) = 0 which “implies” that m = g(m)

for some function g. Therefore, the temperature u can be expressed by

‘e c(kt)ég()'

Example 1.9. Suppose that at time ¢ = 0 an object of mass m is given a vertical upward
velocity V' from the surface of a spherical planet (with mass M and radius R). The height
h of the object is a function of ¢ that obeys

d*h GMm

i T TR h2

M
The gravitational acceleration g on the surface of the planet is given by g = %; thus
including the initial data,

&2h R%g
9 _ )=V, 1.
i@~ wmehpe  MO=0. 000 (L.7)

The physical law of the system above can be written as

f(t7h7R7‘/v7.g) 207



where the five dimensioned quantities have dimension
t]=T, =L, [Rl=L, [V]=LT™" and [¢)=LT"",

and the dimension matrix (with the order of dimension T', L) is given by

1 00 —1 —2]
011 1 1

If 7 =t"h*2 R®V*g* is a dimensionless quantity, then

&3]
100 -1 =21 |“ o
011 1 1% "o
Oy
Oé5_
or equivalently, oy = a4 + 2a5 and s = —(a3 + a4 + «5). Since the rank of the dimen-

sion matrix is 2 there are three dimensionless quantities that can be formed: we choose
(g, g, a5) = (—1,0,0),(—1,1,0) and (—%, 1, —%) to form

h tV 1%
T, = — Ty — —— T — —— .
'R T R °T VR

Therefore, the Pi theorem “implies” that there exists a function F' such that m = F(me, m3)

or
h_ (ﬂ L) .

R R’VgR
Suppose that at ¢ = ¢, the object reaches its maximum height. Intuitively ¢,,,, should
depends on three dimensional quantities g, R, V. On the other hand, we have h'(tyax) = 0;

thus

0 tvV vV OF /tmaxV  V
0="h'(tmax) = R— Fl—,—) = max )
( ) 079 lt=tman ( R’ «/gR) 67r2( R’ \/gR)
t \%
The above relation “implies” that ——— is a function of —; thus
p =
tmaxv \%4
=G(—).
R (\/ gR)

1.2 Characteristic Scales and Scaling

The use of “characteristic scales” helps us reduce mathematical model into dimensionless

form.

Example 1.10. Let p = p(t) denote the population of an animal species located in a fixed
region at time ¢. The simplest model of population growth is the classic Malthus model

which states that the growth rate d—]Z is proportional to the population p, or equivalently

dp _

= rp.
aw P



where r is the growth rate, given in dimensions of inverse-time. A more reasonable model,
called the logistics model, is given by

dp

_ _ P
o == ).

where K > 0 is called the carring capacity (with dimension of population). Let 7 = rt, and

P — P. Then 7 and P are dimensionless variables that satisfy

K
dP
dr

The above ODE is a relation between two dimensionless quantities.

— P(1-P).

Suppose that an initial condition p(0) = py is imposed on this ODE. Then using P and
7 we have the following dimensionless model
dP

T -Pa-P),  PO)=¢ (18)

where € = %. On the other hand, there is another way of rewriting

dp P
%:7’]9(1—}); p(0) =po
into dimensionless form. Let P = 5 and 7 = rt. Then we have
bo
dP  ~ - N
— =P(1-€P), P(0)=1. (1.9)

dr
We note that if € « 1, we tend to let e = 0 and find that (1.9) provides a more reasonable

approximation.

Example 1.11 (Example 1.9 - revisit). In this example we choose characteristic time scale
t. and length scale ¢, to recast the ODE (1.7)

d*h R%g
—_— = h(0) =0, A'(0)=V. 1.7
We note that with dimensionless time # = ¢/t. and dimensionless height h = h/¢, (So that

h(t) = h(tcf))7 ODE (1.7) is equivalent to the dimensionless ODE

¢l
d?h 12 1 _ _ t.V
gﬁzm%__rf’ R(0)=0, R(0)= <. (1.10)
c Zch)2 c
(14 2h)
Three dimensioned quantities in (1.7) are
[R] =L, [g] = LT? and V]=LT".

Therefore, three relevant time scales are t. = R/V, t. = /R/g or t. = V /g, and two

relevant length scales are ¢, = R or {, = V?/g.
) . : & . L
Define a dimensionless quantity € = & Using these characteristic scales, we reach at
g

the following dimensionless problems:



1. Let t.= R/V and ¢, = R. Then (1.10) implies that

d*h 1 _ _
= h(0)=0, h'(0)=1.

2. Let t. = R/V and £, = V?/g. Then (1.10) implies that

d%h 1 _
2 — h(0) = h(0) = =.

3. Let t. = 4/R/g and ¢, = R. Then (1.10) implies that

e 1 ~ o
df2:_(1+ﬁ)2> h(0) =0, A'(0) =+/e.

4. Let t. = +/R/g and {. = V?/g. Then (1.10) implies that

d*h 1 1 _ _

5. Let t. =V /g and ¢, = R. Then (1.10) implies that

d*h 1 - -,
ﬁ——EW, h(O)—O, h(O)—E

6. Let t. =V /g and . = V?/g. Then (1.10) implies that

d*h 1 - ,
W:—m, h(0)=0, A'(0)=1.
Suppose that € « 1; that is, V2 is much smaller than gR. In such a case, we are tempted
to delete the terms involving e (or simply setting e = 0) in the scaled problem. Then
only case 3, 5, 6 provide meaningful models; however, only case 6 can provide a reasonable
interpretation of the real phenomena. Therefore, one needs to be very careful about choosing
characteristic scales.
The reason why t. = V/g and (., = V?/g is the correct characteristic scale when
€k 1?
When the gravity acceleration is always g (instead of (RCj—Mh)Q)’ the rocket takes V/g
time to reach its maximum height ‘2/92; thus t. = ‘g/ is a good choice of the characteristic

V2. . .
time scale and ¢, = o is a good choice of the characteristic length scale.

Example 1.12. The Navier-Stokes equation (which we will derive much later) is used to
described the dynamics of fluids such as the air or liquids. Consider incompressible fluids
(which means the density of the fluid under consideration is a constant). Let w(xq, 2, 23,t) =

(ul(wl, To, X3, t), U (X1, Ta, 3, 1), us(xy, Ta, T3, t)) and p(z1, xa, x3,t) denote the velocity and



the pressure of the fluid at point (21, xe,x3) and time ¢, respectively. Then w and p obeys

a system of PDEs, called the incompressible Navier-Stokes equations:
plu +u-Vou) + Vep = pA,u, (1.11a)
divu =0, (1.11b)
where p is the density of the fluid, w; denotes the partial derivative of u w.r.t. ¢, V,p is the

gradient of the pressure function p, p is the dynamical viscosity with dimension of mass per

length per time , and

— &cj - 6951 0332 (91'3 ’

Let ¢, denote the characteristic length, and u. denote the characteristic speed (which implies

. C . t
that t. = £./u. is the characteristic time). Define 7 = U= Y and
C

—.a
0.’

u
’0(917?/2, ?JS,T) = u*(gcyhfcyz,fcy&td'),

C

p
(Y1, Y2, Y3, T) = qu(Ecyl, Ly, Leys, teT)

C
Then with v = ¥ denoting the kinetic viscosity, we have
0
v
v, +v-Vyuv+ V0= —»A,
ECUC
divyjo =0,

leue

where v - V,v, Ayv and div,v are defined similarly. The dimensionless number Re =
v

is called the Reynolds number, and the equations above read
1
Re

divyo =0.

v, +v-Vyuo+V,g=—Av,

1.3 Scaling Arguments

In mathematics there are lots of inequalities that involve comparison of integrals of functions
and their derivatives. For example, let 4, (R) denote the collection of all continuously
differentiable functions defined on R that vanish at infinity; that is, if f € ¢ (R), then
f e €(R) and im f(x) =0. Then if f € 64 (R) and z € R,

[ rwa=sw  wa [ pwa= s,

—00



Therefore,

2|f ()] < f_ \f’(m)]dtJrf /()| dt = f_ \f'®)|dt  VfeE (R),zeR.
The above inequality then shows that
max| o) <3 [ 1F@ler vreqim), (112)

The scaling arguments sometimes is useful to determined what kind of integrals can be

compared.

Example 1.13. Suppose that we have the following inequality (which can be thought as a
generalization of (1.12))

zeR

max | f(z)] <C’(J0:O‘f’(x)|pd$>r Vfe% (R), (1.13)

where C' is a constant independent of the choice of f. Find the relation between p, q, 7, s.
Let f € 63 (R) be given. For given constants M, L > 0, define

u(z) = Mf(Lx).

Then clearly u € € (R); thus (1.13) (which is assumed to be valid) implies that

max |u(z)| < C’(Ji ‘u’(w)‘p dx)’“.

reR

Since max lu(z)| = M max | f(z)| and the substitution of variables implies that
e xe

0

[ wera= [ prswapa = [ ) .

—00

we have

zeR

max | f(z)] < CMprlL(pl)’"(J_oooo | ()" dx)r.

If pr # 1 or (p—1)r # 0, we can let M, L approach 0 or o0 to make the right-hand side
approach zero which shows f = 0, an impossible situation. Therefore, we must have pr = 1

and (p — 1)r = 0 which implies that p = r = 1 is the only possible case for (1.13) to hold.

Example 1.14 (Holder’s inequality). Suppose that one knows that for some p, ¢, 7, s € R,

we have the following inequality

|f($1, e 7$n)g(x17 T 7xn)‘ d(xla e axn>

< ( ‘f(g:lu T 7xn)‘pd('r17 T ,In)> (J‘ |g(l‘17 T ’In>’qd<l’1, e wrn))
R Rn

for all f € LP(R™) and g € L%(R™), where that a function h belongs to class L"(R™) means
that h : R” — R and

(1.14)

‘h(asl,--- ,azn)‘rd(xl,-~- ,Tp) < 0.
RTL



We would like to know the relation between p, q, 7, s.
Let f,g : R" — R be such that f € L?(R") and g € LY(R™). For M, My, L > 0, define

w(wy, - ,xy) = Myf(Laxy, -+, Lx,) and  v(xq, - ,x,) = Mag(Lay, -+, Lx,) .

Then u,v : R — R. Moreover, the change of variables formula implies that

‘U(Jfl,' o 7xn)|pd(x17 T 7xn) = M{)Lin |f($1,' o 7xn>’pd<xla o 7xn)7
o (1.15)

. ‘qd('xlv”' 73:71) = MgL_n B |g(:l:1, axn)|qd($1a"' 7:[:71,)7

thus v € LP(R™) and v € LI(R™). Since (1.14) is assumed to be known, we must have

‘u(xlf" axn)v($la"' 7$n)‘d(x1>"' axn)

Rn
< ( Rn‘u(x1,~-- ,xn)|pd(m1,--~ ,mn))r(JRn‘v(xl,--- ,xn)‘qd(ml,--~ ,xn))s.

By the fact that

‘U(ZL‘l,"' al‘n)v(xla"' 7$n)‘d(l‘17'” al‘n)
Rn»

= M ML~ ‘f L1, ) n)g($17 ,il')n)|d(l'1,"' 7xn)7
(1.15) further implies that

M M,L~ ’f 1, X)) (T, ,xn)‘d(azl,--~ , Tp)

= ’U’(xla"' an)v(xla'” 7:En)‘d(x17"' 71'71)
R

< ( Rn’u(azl,--~ ,xn)\pd(xl,--- ,$n))T<JRn‘U(331,“' ,xn)‘qd(xl,--- ,xn)>s

< M{WMSSL”T”S<J ’f(xb ’xn)‘pd(xh... 71:”))7“)(
Rn

X ( Rn‘g(x1,~- ,xn)‘qd(xl,--- ,xn)>s.

Therefore, the same reason in Example 1.13 shows that pr =1, ¢gs =1 and —n = —nr — ns;

1
thus r = s = — and we have
q

P’
‘f(xlu"' 7*/1;71)9(1'1’ }dxla 7:En
R

; (1.16)
J ’f X, l‘n)‘pd(:ﬁ,-" , T p J |g Xy, xn)|qd(a:1,--- ,xn)> :

Q=

Where - + - =1.
p q



Remark 1.15. Later on we will simply write flzy, - yxp)d(xy, -+ x,) as f(z)dx
R7 Rn
with z = (21, -+ ,z,) in mind.
Remark 1.16. Inequality (1.16) in fact holds for 1 < p, ¢ < o0 and 1 + 1 1. In general,
p q

suppose that @ € R" is a region on which two functions u, v are defined so that u € LP(2)

and v € LI(Q) for some 1 < p,q < o0 and ]19 + i = 1, where that a function h belongs to
class L"(€2) means that h : Q — R and

J ‘h(l’)rd!}}EJ W21, 2| Az, @) < 0.
Q Q

Letting f = 1gu and g = 1qu in (1.14), where 1q is the indicator function of €2 given by
1 ifxe,

0 otherwise,

J‘u( )| de < J\u ) da)” Jyv yqu . (117)

The inequality above is called the (general) Holder inequality.

lo(z) = {

we find that

Example 1.17 (Sobolev’s inequalities). The simplest Sobolev’s inequalities is of the form

(f F@)"de)” < C(JRD (VH@dz) v fediRY, (1.18)

where C' is a generic constant independent of f, and ¢!(R") denotes the collection of
continuously differentiable functions that vanish outside certain balls. In this example we
determine the relation among n, p, q,r, s.

Let f : R® — R be such that f € ¢}(R"). For given constants M, L > 0, define
u(x) = M f(Lz). Then u € €}(R"™); thus u also satisfies

(Jn ‘u(w)‘qu>s < C(Jn ‘(Vu)(x)’pdxy. (1.19)

On the other hand, the change of variables formula implies that
u(z)|" dz = MqL_"J |f(2)|" d, J [(Vu)(2)]" do = Mpr_”J (Vf)(@)| dx;
Rn Rn Rr Rr
thus (1.19) implies that

i J f@)[dr) " < omrr J @)

Since (1.18) holds for all M,L > 0, we must have pr = ¢s and (p — n)r = —ns. If
pr = gqs = «, we find that (1.19) becomes

(Jn !u(m)‘qu>z < C’(fn ‘(Vu)(:z:)‘pda:>z

and n, p, g must satisfy




Chapter 2

Ordinary Differential Equations

Definition 2.1. A differential equation is a mathematical equation that relates some un-
known function with its derivatives. The unknown functions in a differential equations are
sometimes called dependent wvariables, and the variables which the derivatives of the
unknown functions are taken with respect to are sometimes called the independent vari-
ables. A differential equation is called an ordinary differential equation (ODE) if it
contains an unknown function of one independent variable and its derivatives. A differ-
ential equation is called a partial differential equation (PDE) if it contains unknown

multi-variable functions and their partial derivatives.

We note that in most of the mathematical ODE models, the independent variable is the

time variable ¢ or the spatial variable x.

Definition 2.2. The order of a differential equation is the order of the highest-order
derivatives present in the equation. A differential equation of order 1 is called first order,

order 2 second order, etc.

Remark 2.3. It is commonly assumed that an ordinary differential equation of order n
F(t,y,y' -, ym D y™) =0 (if the independent variable is t)

can be written as
y(n) (t) = f(t7 Y, y/a e 7y(n—2)’ y(n—l)) .

Moreover, given a differential equation above, we can define a vector-valued function z =
(y,y’, Y, ,y("fl))T and write the ODE above as

_ . - _ 2 -
d <2 <3
(1) = = £(t,2 2.1)
Zn—1 Zn
L “n i _f(t,Zl,Zg,'-' 7Z7L)_

which is a first order ODE with a vector-valued unknown.
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Definition 2.4. The ordinary differential equation

F(t7 Y, y/7 e ’y(n—1)7 y(n)) = y(n)(t) - f<t7 Y, y/a T ’y(n—Q)’ y(n—l)) =0 (22)

is said to be linear if
F(t,ey, ey’ ,cy™ D cy™) — F(£,0,0,---,0)

. VceR. (2.3)
:C[F(t>yay/7 ’y(n— )’y(n)) _F(taoa()? 70)]

The ODE (2.2) is said to be nonlinear if it is not linear.

2.1 Initial Value Problems

Definition 2.5. An initial value problem (IVP) is a (system of) differential equation

y(n) (t) = f(t7 Y, yla o 7y(n72)7 y(nil)) . (24&)

equipped with an initial condition

y(to) =vo, y'(to) =v1. y"(to)) =va, - Yy V(to) = yu, (2.4b)

where tg is a given point/time, and yo, 91, - ,y,_1 are given numbers. A solution to the
IVP (2.4) is a function y defined on an open interval I so that ¢y € I and (2.4) is satisfied.

Example 2.6. In Example 1.10 we have talked about the Malthus model

dp

ik p(0) = po

for the growth of population. In this model, the growth rate is assumed to be positive.
However, the same differential equation can be used to model the decay of radioactive
substance such as plutonium (4% ). If p(¢) is the total amount of such kind of substance at
time ¢, the “growth” rate dit) is proportional to the total amount p, except that the “growth”
rate r is negative. In such a case, r is called the decay rate.

The model has linear ODE and usually is called linear model.

Example 2.7 (Spring-mass system with or without Friction). Consider an object of mass
m attached to a spring with Hook’s constant k. Let x(t) denote the signed distance between
the object and the equilibrium position at time t. If there is no friction, by the Newton

second law of motion we find that x obeys the ODE
mi = —kx .

When the friction is under consideration, by the fact that the friction is proportional to the
velocity, we find that

mi = —kx —1rz.



If in addition some external force f(t) are exerted on the mass, the model becomes
mi = —kx —ri+ f.
We note that the ODE above is linear since the function
F(t,z,2,%) = md +ri+ kx — f(t)

satisfies (2.3).
If the initial position and the initial velocity of the object is x(0) = zo and z'(0) = 21,
then z(t) satisfies the IVP

mi = —kr —ri+ [, 2(0) =z, 2'(0)=1p. (2.5)
The ODE in (2.5) is linear.

Example 2.8 (Oscillating pendulum). A simple pendulum consists of a mass m hanging
from a string of length L and fixed at a pivot point P. When displaced to an initial angle

and released, the pendulum will swing back and forth with periodic motion.

Figure 2.1: A simple pendulum system

Let 0(t) denote the angle, measured from the vertical dashed line (see figure 2.1), at

time ¢. By Newton’s second law,
mLH = —mgsinf 6(0) =6y, 6'(0) =wp.
The ODE above is a nonlinear ODE.

Example 2.9 (Lotka-Volterra or Prey-Predator model). Suppose that two different species
of animals interact within the same environment or ecosystem, and suppose further that the
first species eats only vegetation and the second eats only the first species. In other words,
one species is a predator (#z 8 'ﬁ ) and the other is a prey (4 ).

Let p(t) and ¢(t) denote, respectively, the populations of the prey and the predator. If

there is no prey, then the population of the predator should decrease/decay and follows

dq

E:_ﬁqv B>O



When preys are present in the environment, it seems reasonable that the number of encoun-
ters or interactions between these two species per unit time is jointly proportional to their
populations p and ¢; that is, proportional to the product pq. Thus when preys are present,
the predator are added to the system at a rate bpg, b > 0. In other words, the population

of ¢ should follows

%z—ﬁq—{—épq, 8,6 >0.
On the other hand, if there is no predator, the population of the prey should follow the
Malthus model (assuming that the supply of food is always sufficient); however, the popu-
lation of the prey will decrease by the rate at which the preys are consumed during their

encounters with the predator; thus

%zap—wq, a,7>0.
Therefore, we reach at the predator-prey model (or the Lotka- Volterra model):
dp
= = ap—7pa = pla—14), (2.6a)
dq
= = —Pa+0pa = q(=0 + 0p). (2.6b)

An initial condition p(0) = po, ¢(0) = go can be imposed so that it becomes an IVP.
The ODE (2.6) is nonlinear since by letting z = [p, ¢|T, we can write (2.6) as

. a0 —Y2129

Z—f(t, Z) N |:O —B:| Z |: 52122 :|
which shows that F(t,cz, cz) — F(t,0,0) # ¢[F(t, z,2) — F(t,0,0)] if ¢ # 1.
Example 2.10. Now we consider another spring-mass system in which there are two objects,
of mass my and my, moving on a frictionless surface under the influence of external forces

Fi(t) and Fy(t), and they are also constrained by the three springs whose Hooke’s constants

are ki, ko and ks, respectively (see figure 2.2).

Figure 2.2: A two-mass, three-spring system

Then the equations for the coordinate x; and x5, measured from the equilibrium positions

of mass m; and msy respectively, are given by

d22171

my 2 —k1x1 + ka(xe — 21) + F1 (2.7a)
d2

mgﬁ = —ko(wy — 21) — kgwo + F5 . (2.7b)

dt?



Reason: Let L, Lo, L3 be the length of the unconstrained springs, and ¢, 5, {3 be the

increment of the springs in equilibrium. Then
klgl == ]{3262 - k’3€3 . (28)

Let z(t) and y(t) be the position of mass m; and ms, measured from the left end, respectively.
Then z(t) and y(t) satisfy

d?

m dtf = —ki(z — L1) + kao(y — 2 — Lo) + F1, (2.9)
d> 4l + — L3)+ F

My dtg = —ko(y — 2 — Lo) + k(L1 + Lo+ Ly + by + o + U3 —y — L) + I

= —kg(y — T — L2> -+ k?g(Ll -+ L2 -+ él —+ EQ —|—€3 — y) + F2 . (29b)

Let x1, x5 be the position of masses m; and my measured from the equilibrium position;
that is, ;1 = o — L1 — ¢; and w9 = y — L1 — {1 — Ly — {5. Then (2.7) follows from using (2.8)
in (2.9).

Example 2.11 (Kepler's laws of planetary motion). Kepler’s laws of planetary motion

describe the motion of planets around the Sun and state that

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal

intervals of time.

3. The square of the orbital period of a planet is directly proportional to the cube of the

semi-major axis of its orbit.

Suppose that planet under consideration is Earth. Since Earth moves on the plane of the
ecliptic (% i » ) , we can treat the orbit of Earth as a plane curve. Now we introduce a

polar coordinate system and a Cartesian coordinate system on this plane as follows:

1. Let the sun be the pole of the polar coordinate system, and fixed a polar axis on this

plane.

2. Let % be the unit vector in the direction of the polar axis, and j be the corresponding

unit vector obtained by rotating ¢ counterclockwise by g

Suppose the position of the planet on the planet at time ¢ € [ is given by 7(t) = x(t)i+y(t)j.
For each t € I, let (r(t),0(t)) be the polar representation of (z(t),y(t)) in the trajectory.
We would like to determine the relation that r(¢) and 0(t) satisfy.

Define two vectors 7(t) = cos6(t)i + sinf(t)j and é(t) = —sinf(t)é + cosf(t)j. Then
r = rr. Moreover, let M and m be the mass of the sun and the planet, respectively. Then

Newton’s second law of motion implies that

GMm e (2.10)

r2



By the fact that
7' = (—sinf,cos6)f’ = 0'0 and 0 = —(cos,sin)f’" = -0’7,
we find that
r’ = %(T’?—I— 7"9’5) — P00 + 100 + 0" — r(0")*
= [r" —r(0")?]7+ [2r'0" + 7“9"]5.
Therefore, (2.10) implies that

GJQ\/!? = [r" —r(0")?]7+ [2r'0" + 7”9”]@\.

r

Since 7 and 0 are linearly independent, we must have

GM " /
__,,,.2 =r’ — 7"(9 )2 , (211&)

2r'0" + 16" =0. (2.11Db)

Note that (2.11b) implies that (r26’)’ = 0; thus 720’ is a constant. Since mr?6’ is the
angular momentum, (2.11b) implies that the angular momentum is a constant, so-called the
conservation of angular momentum ( & # & ¥ |5 ) .

Let ¢ be the constant angular momentum so that
0 =mr%0’. (2.12)

Now assume that in each small time interval J < I of interest, 6 : J — R is one-to-one so
that the inverse function of 6 exists. Then t = ¢(6), and every function of ¢ can be viewed
as a function of 6 for t € J.
) . d .. d?
For a function f of ¢, we let f(6) denote @f(t(ﬁ)) and f(0) denote Wf(t(@)) In other

words, f denotes the derivative (in 0) of the composite function f ot. By the chain rule,

d dfd d ¢ d ¢ .
—=—=0—==—— ivalentl "= —f;
it dtdd s memap O cauivalently [r=Tunt
thus r’ = ﬁi. Let u = 1 Then @ = —— which implies that r’ = —ﬁa. Therefore,
mr? r 72 m
I 2.,
B LU

thus (2.11a) and (2.12) together show that
2 0 N\2 2 2
~GMu® = —Lmﬂ - r(—) = —imﬂ - g—ug’.
m m

or equivalently,




The general solution to the ODE above is

GMm? GMm?

u=Ccos 4+ Cysinf + 7 = C'cos(0 — 6y) + 7

Choose the polar axis so that 6y = 0. Using that u = 1, we find that
T

1 GMm?
;ZT(l—l—eCOSQ), (2.13)
Cr? . . . . .
where e = CMmE (2.13) is the polar presentation of a conic section, and this proves

Kepler’s first law of planetary motion.

Example 2.12. Suppose that f : R — R is a differentiable function. To find a relative
minimum of f, we first look for critical points of f. In general, it may not be easy to solve
for zeros of f’. In this example we provide a way to “find” possible local minimum of f.

Suppose that z is given. If f'(z¢) < 0, we expect that the value of f(x) will be smaller
than f(z¢) when z is close but on the right-hand side of xy. Similarly, if f’(xy) > 0, then
the value of f(x) will be smaller than f(xy) when x is close but on the left-hand side of
xo. Therefore, for a given point xy, we can localize the position of the nearest critical point
where f attains a local minimum by “moving” the position of z to the right or to the left
based on the sign of f’. This motivates the following IVP

' =—f"(x), z(0) = xp .
In general, for a differentiable function f : R® — R, we use
' =—(Vf)(x),  x(0)=mz,
where © = (x1, 22, -+ ,x,), to find a critical point near .

Theorem 2.13 (Existence and Uniqueness of Solution/Fundamental theorem of ODE).

Consider the initial value problem

v = ftyy oy ), wte) = o, y'te) =v, oy V() = g (2.14)

If f and the first partial derivatives of f with respect to all its variables, possibly except t,
are continuous functions in some rectangular domain R = [a,b] x [cy,do] x [c1,dq] x -+ x
[¢n_1,dn_1] that contains the point (to, Yo, Y1, - ,Yn—_1) in the interior, then the initial value
problem has a unique solution ¢(t) in some interval I = (tg — h,ty + h) for some positive

number h.

2.2 Boundary Value Problems

In this section we only consider ODE of the form

y" +p@)y’ +q(@)y = g(z), (2.15)



where p, ¢ and g are given functions, and y = y(x) is the unknown function. Instead of
imposing the initial condition y(tg) = yo and y’(tg) = y1, sometimes the following four kinds

of boundary condition can be imposed:
L y(a) = yo, y(B) = yi; 2. y(a) = yo, y'(B) = y1;
3. y'(a) = yo, y(B) = y; 4. y'(a) = yo, y'(B) =y,

where «, 3, yo and y; are given numbers. Such kind of combination of ODE and boundary
condition is called a (two-point) boundary value problem (BVP), and a solution y to a
BVP must be defined on the interval I = [« 3], as well as satisfy the ODE and the boundary

condition.
Example 2.14. In this example we reconsider the ODE in the spring-mass system
mi = —kx —ri+ f(t).
We explain the meaning of the different boundary condition as follows:
1. 2(0) = 29 and x(T") = 2;: the initial and the terminal position of the mass are given.

2. 2(0) = x¢ and z/(T) = v;: the initial position and the terminal velocity of the mass

are given.

3. 2/(0) = vg and z(T") = z;: the initial velocity and the terminal position of the mass

are given.
4. '(0) = vg and z'(T) = vy: the initial and the terminal velocity of the mass are given.

Example 2.15. Again we consider the ODE

d*h GMm

ar T TRy h)2
in Example 1.9. This time we do not require that initial height A(0) and the initial velocity
h'(0) are given but instead we want the object to reach certain height H at time ¢t = T.
Then the BVP is written as

d*h GMm
= h(0) = h(T) = H.
m dt? (R+h)?’ (0)=0, ()

Similarly, if we want the object to reach certain velocity V at time ¢t = T', then we have the
BVP
d*h GMm

= o MO=0, WI)=V.

Consider the two-point boundary value problem

y" +p)y' +q(x)y =g(x),  yla)=w, y(B)=u. (2.16)



Let z(x) = y(x) — Z:Zyl - Z_gyo. Then z satisfies

2"+ p(@)e +q@)z = Glz),  2(a) = 2(8) = 0, (2.17)

where G(z) = g(z) —p(m)ygé:? - q<l’)(2:ayl + gyo)-

assume the homogeneous boundary condition yg = y; = 0 in (2.16). Similarly, ODE (2.15)

Therefore, in general we can

with the other three kinds of boundary conditions can also be rewritten as a BVP with

homogeneous boundary condition.

Remark 2.16. Even though the initial value problem

y" +pt)y +qt)y=91),  ylto) =vo, ¥'(to))=un (2.18)

looks quite similar to the boundary value problem (2.16), they actually differ in some very
important ways. For example, if p,q,g are continuous, the initial value problem (2.18)
always have a unique solution, while the boundary value problem (2.16) might have no

solution or infinitely many solutions:

1. y”" +y = 0 with boundary condition y(0) = y(7) = 0 has infinite many solutions

Ye(r) = csinz.
2. y” +y = sinz with boundary condition y(0) = y(7) = 0 has no solution.

On the other hand, there are cases that (2.16) has a unique solution. For example, the

general solution to the boundary value problem
y// + 2y — O

is given by
y(z) = Cy cos V2 + Cysinv/2z;

thus to validate the boundary condition y(0) = 1 and y(7) = 0, we must have C; = 1 and
Cy = — cot /27. In other words, the solution y(x) = cos V2x — cot /27 sin /2.

The existence theory of the solution to (2.16) requires a totally different functional
framework, and will not be proved in this course. However, we will still state the existence

theory.

Theorem 2.17. Let o, be real numbers and o < 3. Suppose that p : [a, ] — R is
continuously differentiable, and q : [, 5] — R is continuous. Then (2.16) (with yo = y; = 0)
has a solution if and only if g : [, B] — R is integrable and

B
g =0

for all ¢ satisfying " — p(x)’ (q(x) p'(z)) =0 and (o) = p(8) = 0. The solution
is unique if the ODE y" + p(x)y’ + q(x)y = 0 with y(a) = y(5) = 0 has only trivial solution
y=0.



2.3 Solving IVP Using Mablab

We can use the command “ode45” in Matlab to solve for the IVP (2.4). Suppose that we
want to solve the IVP

v =y ™) y(0) = v, ¥ (0) = w - y"(0) = g
numerically using matlab.

Step 1: Write the IVP in the vector form y’ = f(¢,y) (form (2.1)) with initial condition
y(0) = y,. Note that usually you need to write the IVP in a dimensionless form and

then transform
Step 2: Write (and save) the function f in matlab.

Step 3: Once the function f is saved, use the command “ode45” (based on the adaptive
Runge-Kutta method) to solve the IVP: the format is

[t,y] = ode4b(@name of the function,[starting time, terminal time], initial data)

where the output of this command has two pieces t and y (whose names can also be

changed and does not have to agree with the names you use in writing the function):

(a) t is a column vector whose components are the samples of time at which the

numerical solution evaluates.

(b) y is a m x n matrix, where m is the total number of time samples, and n is the

dimension of the vector y.

To illustrate how these steps are carried out, we look at the following example.

Example 2.18. In this example we solve for the IVP (from the Lotka-Volterra model)

dp

= —0.16p + 0.08pq , (2.19a)

d

d—z — 4.5¢ — 0.9pq, (2.19b)
p(0) =5, ¢(0)=3. (2.19¢)

—0.16p + 0.08
Let Y= [ >q]T7 and f(ta y) = g -
4.5q — 0.9pq

function f can be given by the following m-file:

} numerically using matlab. In matlab, the

function yp = ODE_RHS(t,y)
yp(1,1) = =0.16%y(1,1) + 0.08*y(1,1)*y(2,1); (2.20)
yp<271) = 45*Y(271> o 09*Y<171)*y(271)a

where



. the word “function” in the first line indicates that this m-file will be a function that

you can use in matlab.

. yp is the name of the output variable, and t, y are the names of the input variables

(and the names can be changed); however, you should keep t (time) as the first input/
variable and y (the unknowns in the ODE) as the second input/variable in order to

use the built-in matlab ODE solver.

. ODE_RHS is the name of the function (and also the name of the file so that matlab

can see it) that will be used/recognized in matlab. The name can be changed but you

need to have this name different from built-in functions such as sin, exp, and etc.

. In this example, the input y is a 2-d column vector. y(1,1) and y(2,1) denote the

first and second component of y, respectively. Similarly, the output yp is also a 2-d
column vector, and yp(1,1) and yp(2,1) denote the first and second component of yp,

respectively.

Once the function is saved, you can check if matlab is able to use this function by

assigning the value of ¢ and y (remember, y has to be a 2-d column vector) and see if it

outputs the correct value. For example, in the main window of matlab you can type

ODE_RHS(1,[2:5))

where [2; 5] is the column vector [2,5]%, and it should output something like this

>> ODE_RHS(1,[2:5])
ans =

0.4800
13.5000

which means the first component of the output (in our code it is yp(1,1)) is 0.48 while the

second component of the output (in our code it is yp(2,1)) is 13.5.

as

For the readability of codes, we recommender the reader to have (2.20) written, at least,

function yp = ODE_RHS(t,y)
p =y(1,1);

q=y(2,1);

yp(1,1) = —0.16%p + 0.08*p*q;
yp(2,1) = 4.5%q — 0.9*p*q;




As long as the function f (named ODE_RHS) is saved, we can use the matlab built-in
ODE solver “ode45” to solve for the IVP (2.19). In the main window of matlab, type

[t,y] = oded5(@QODE_RHS, [0,10],[5;3]);

to solve (numerically) for the IVP in the time interval [0, 10] and initial data [5,3]". In this
case, the solution y is an m x 2 matrix: the first column is the value of p (at those sampled
time t) and the second column is the value of q (at those sampled time t).

e Visualization of the numerical solution: In the following we provide two codes

figure(1)

title("The population of fox and rabbit versus time’)

hold on;

plot(t,y(:,1),"D");

plot(t,y(:,2),r7);

legend("The population of fox’,’The population of rabbit’)
xlabel(’time’)

ylabel("population’)

which outputs

The population of fox and rabbit versus time
557

The population of fox
The population of rabbit
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time
and
figure(2)
title("The phase portrait’)
hold on;

plot(y(:,1),y(:,2),’b’);
xlabel("population of fox’)
ylabel("population of rabbit’)




which outputs

The phase portrait

population of rabbit
b ha [ [ ra
@ N N R @D D oW

=
[=2]
T

4.6 4.7 4.8 4.9 5 b 5.2 5.3 5.4 5.5
population of fox
for the visualization of the numerical solution. The figures themselves should explain the

codes clearly.

Example 2.19. In this example we look for the minimum of the function f(z,y) = ze Y’
using gradient flows. First we provide the graph of f so that we have some information about

this function. To do this, do the following:

[x,y] = meshgrid(-2:0.1:2,-2:0.1:2);
7 = x.¥exp(—x.A2-y.A2);

surf(z);

and this will produce the following figure

Figure 2.3: The graph of the function f(z,y) = ze * %"



From the graph of f, we find that there is a minimum and a maximum for f.
Now we try to find the minimum using the gradient flow. We compute the first partial

derivative of f and obtain that
2

falz,y) = (1= 22%)e™ " and fylz,y) = —2pye Y

Therefore, we will focus on the following ODE

2 2

(222 — 1)e~*"~Y

2 .2
2axye v 7Y

o] =~ - Pt ..

dt |y

As in the previous example, we first name (and save) the function F' as ODE_RHS

(again, the name of the function can be changed) as follows:

function yp = ODE_RHS(t,INPUT)
x = INPUT(1,1);

y = INPUT(2,1);

yp(1,1) = (2*xA2-1)*exp(—xA2-yA2);
yp(2,1) = 2*x*y*exp(—xA2-yA2);

Here we rename the second input of the function as “INPUT” in order to differentiate this
input from the real variable y in the equation. Maybe it is much clearer if we rewrite the

code as

function zp = ODE_RHS(t,2)

x = z(1,1);

y = 2(2,1);

zp(1,1) = (2*xA2-1)*exp(-—xA2-yA2);
zp(2,1) = 2*x*y*exp(—xA2-yA2);

Once we finish saving the function ODE_RHS, we can use

[t,y] = ode45(@ODE_RHS,[0,10],[0.5:0.5]);

or

[t,y] = oded5(Q(t,y) ODE_RHS(t,y),[0,10],[0.5;0.5]);

t_there is a space here

to find the numerical solution of the gradient flow with initial condition [x(0),y(0)] =

[0.5,0.5]. We are only interested in the final destination of the flow; thus we use

y(end,:)




to find the last row of y (note that the unknown is a 2-d column vector, so the output y

using “ode45” will be an N x 2 matrix) and obtain that

>> y(end,:)
ans =

—-0.7071  0.0006

From the computation of the gradient of f, we find that the critical points of f should be
(i %, O). So, why does the gradient flow not produce the correct/approximated critical
point? This is because the time interval is too small so that the flow has not reach its final
destination yet. Let us replace the time interval as [0, 20] and rerun the whole process again,
one should obtain y(end,:) = [-0.7071 0.0000].

e Geometric point of view: The solution to the IVP

o] =-wnen. (221a)

x(0 x
Moﬂ = {yﬂ (2.21b)
produces a curve (z(t),y(t)), where ¢t belongs to some time interval (for example [0, 10] or
[0,20] in our previous tests). This curve is called an integral curve of the direction field
—(Vf)(x,y), and the initial data (z¢,yo) is the point where the integral curve starts and
is called the starting point of the curve (in the code above the starting point is (0.5,0.5)).
The ODE (2.21a) shows that the tangent direction of the integral curve should agree with
the direction field.
Let us visualize this by plotting first the vector field —(V f). To plots a vector u =

(x component, y component) at the point p = (x coordinate, y coordinate), we use the com-

mand “quiver” in the following way:

quiver(x coordinate, y coordinate, x component, y component)

For example, if you want to plot 4 vectors (1,1), (—1,—1), (1,—1) and (—1,1) at 4 points
(1,1), (0,0), (1,0) and (0, 1), respectively, you can do the following;:

L = [1,1;0,0;1,0;0,1];
VvV =[1,1-1-1;1,-1;-1,1];
quiver(L(: 1).L(:2) V(- 1) V(. 2))

and the following figure will be produced:



05

-0.5

Note that if you replace the last line of commands by “quiver(L,V)”, it will produce garbages.
You need to give “quiver” the x coordinate and y coordinate of base points, as well as the x
component and y component of vectors, separately, in order to have the correct plot. Now,

since we have build up a grid using “[x,y] = meshgrid(-2:.1:2,-2:.1:2);”, we can simply use

quiver(x,y,(2*x. A2-1).*exp(—x. A2-y. A 2),2*x ¥y *exp(—x. A2-y. A 2))

to produce the following figure of the vector field:
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We can also add the level sets of f onto the plot by the following command

contour(x,y,z)

so that we obtain




Finally, we plot the integral curve (in red color) using

plot(y(:,1),y(:,2),17)

after the ode solver “[t,y] = ode45(@ODE_RHS,[0,20],[0.5;0,5]);” is applied. You should be
able to obtain the following figure:

f(x,y) = x exp(-x”-y?)

T T 1
== vector field -(V f)
C_Dlevel sets of f

integral curve

1 S

£b - -

We note that the tangent direction of the integral curve is indeed parallel to the vector
field —(V f), and the integral curve is perpendicular to the level set of f (which agrees with
what we learned in Calculus).

We summarize our codes in the following (in case you cannot reproduce the result):

[x,y] = meshgrid(-2:0.1:2,-2:0.1:2);

7 = x.¥exp(—x.A2-y.A2);

figure(1)

title(’f(x,y) = x exp(—xA2-yA2))

hold on;

quiver(x,y,(2*x. A2-1).*exp(—x. A 2-y. A 2),2%x. *y. *exp(—x. A 2-y. A 2))
contour(x,y,z)

[t.y] = ode45(QODE_RHS,[0,20],[0.5:0.5]);

plot(y(:,1),y(:2),17);

axis equal,

legend('vector field —(\nabla f)’'level sets of {’)'integral curve’)




Chapter 3

Partial Differential Equations

3.1 Models with One Temporal Variable and One Spa-
tial Variable

3.1.1 The 1-dimensional conservation laws

Suppose that a substance of interest lives in a 1-dimensional space such as a tube. Let

u(z,t) be the density or concentration of the substance at position x and time t. Then

z+Ax
J u(y,t)dt

T

is the total amount of the substance in the interval I = [z, z + Az] at time ¢; thus during
the time period [t,t + At], the change of the amount of the substance in the interval I in
the time period [t,t 4+ At] is given by

r+Ax z+Ax z+Ax
f u(y,t + At) dt — J u(y,t)dt = f [u(y, t + At) —u(y,t)] dy .

x x x

On the other hand, there are two sources of changing the amount of the substance in the

interval I:

1. a flux that describes any effect that appears to pass or travel the substance through

points.
2. a source that will release or absorb the substance in this interval.

Let f denote the flux and ¢ denote the source. Then in the time interval [¢,¢ + At] the

amount of the substance flowing into I from the point x is given by

t+At
J Fa ) d’
t

while amount of the substance flowing out of I from the point x + Ax is given by
t+At
J flx + Ax,t")dt".
t
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Moreover, the change of the amount of the substance in the interval I in the time period

[t,t + At] due to the source is given by

t+At pr+Azx
f f q(y,t') dydt'.
t x

Therefore, the change of amount of the substance in the interval I in the time period [¢, t4+At]

is given by

AL tHAE prtAc
J [f(x, t")— f(z+ Ax, t')}dt' + J J q(y,t') dydt’.
t t T

As a consequence,

JH ’ [u(y, t+ At) — u(y, t)} dy

T

t+AL t+ At prt+Ax
= f [f(x, t") — f(z + Ax, t’)]dt' + J J q(y,t") dydt’.
t t T

Dividing both sides through Az and then passing to the limit as Az — 0, by the fundamental

theorem of Calculus we find that (without any rigorous verification)

0

t+At
u(x,t—l—At)—u(x,t):—ft P

t+At
[z, t")dt' + f q(z,t")dt".
t

Similarly, dividing both sides of the equality above through At and then passing to the limit

as At — 0, the fundamental theorem of Calculus implies that

Example 3.1 (Traffic flows). Consider the traffic on the highway (parameterized by R).
Let u denote the car density (given in the number of vehicles per unit length). Then the

flux f is a function of u with the property that
(a) f(u)=0ifu=0o0ru>L,
(b) f'(u) > 0if u € (0,Umax), and f'(u) < 0 if u € (Umax, L).
If f is differentiable, and f’(u) = ¢(u). Then the equation of continuity reads
ur(z,t) + c(u(z, t)u,(z,t) = q(x,t) VreR,teR
which can be abbreviated as
w+c(u)u, =q in RxR.
To complete the model, an initial condition

u(z,0) = ug(x) VrxeR (or simply u = up on R x {t = 0})



has to be imposed.

When the domain of interest (for example, the highway) has finite length, we can pa-
rameterize it as [0, L]; however, to complete the model we also have to impose the boundary
condition which tells us what happened to u at the start and end of the highway. The

boundary condition for 1-d conservation laws are usually given by one of the following three

types:

1. u(0,t) = ur, and u(L,t) = ug which says that the boundary value of u is prescribed

(and can be time-dependent if u;, or ug are time dependent).

2. u,(0,t) = 0 and u(L,t) = 0 which says that the derivative of u on the boundary is

Zero.

3. Mixed boundary condition: on one end w is given and on the other end wu, is given.

3.1.2 The 1-dimensional heat equations

Consider the heat distribution on a rod of length L: Parameterize the rod by [0, L], and
let ¢ be the time variable. Let p(z), s(z), x(x) denote the density, specific heat, and the
thermal conductivity of the rod at position x € (0, L), respectively, and J(x,t) denote the
temperature at position z and time ¢t. For 0 < x < L, and Az, At « 1,

r+Az t+At
J p(y)s(y) [I(y, t+at) —9(y,t)] dy :L [k(x+A2)0, (x+ Az, 1) — Kk(2)0,(x,t)] d,

T

where the left-hand side denotes the change of the total heat in the small section (z, z+ Az),
and the right-hand side denotes the heat flows from outside. If there is a heat source @,

then the equation above can be modified as

fﬁ zp(y)S(y) [O(y, t+at) — 9y, t)] dy

T

t+At t+AL rr+Ac
:J [k(z4A2)d,(z+ Az, ') — k(z)0y(2, )] dt’ + J J Q(y,t') dydt’ .
t t T

Dividing both sides by At and passing to the limit as At — 0, by the Fundamental Theorem
of Calculus (assuming that all the functions appearing in the equation above are smooth

enough) we obtain that
T+ Az T+Ax
J p(y)s(y)de(y,t) dy = [I{(ZE + Ax)Y,(x + Az, t) — k(z)0,(z, t)] + J Qy,t)dy .

xT T

Dividing both sides of the equation above by Az and then passing to the limit to Az — 0,
we find that

p(x)s(x)dy(x,t) = [k(x)0.(2,1)] + Q(x,1) O<z<L, t>0. (3.1)



Assuming uniform rod; that is, p, s, k are constant, then (3.1) reduces to that
Vi(z,t) = &*Vpu (2, 1) + q(z, 1), O<z<L, t>0, (3.2a)

where a? = = is called the thermal diffusivity.
pS

To determine the state of the temperature, we need to impose that initial condition
Iz, 0) = Jo(z) O<z<lL (3.2b)
and a boundary condition.
(a) Temperature on the end-points of the rod is fixed: J(0,t) = T; and ¥(L,t) = Ts.
(b) Insulation on the end-points of the rod: 9,(0,t) = ¥,(L,t) = 0.

(¢) Mixed boundary conditions: ¢(0,t) = T and ¥,(L,t) = 0, or ¥(L,t) = T» and
V,(0,t) = 0.

3.1.3 The 1-dimensional wave equations

1. From Hooke’s law:

k
(") () ()

u(z — h) u(z) u(x + h)

imagine an array of little weights of mass m interconnected with massless springs of
length h, and the springs have a stiffness of k (see the figure). If u(x) measures the
distance from the equilibrium of the mass situated at x, then the forces exerted on
the mass m at the location = are
F ot
ewton — TG = M——2-\T,
Fhiooke = k[u(z + h,t) — u(z,t)] — k[u(z,t) — u(z — h,t)]
= k[u(z + h,t) — 2u(z,t) + u(z — h,t)] .

If the array of weights consists of N weights spaced evenly over the length L = (N+1)h
of total mass M = Nm, and the total stiffness of the array K = k/N, then

@(xt)— N KL*u(x+ h,t) — 2u(x,t) + u(x — h,t)
o2 N+1 M h?

Taking the limit N — o0, h — 0 (and assuming smoothness) we obtain

Uy (2,1) = g, (z,t). (3.3)



2. Equation of vibrating string: let u(x,t) measure the distance of a string from its

equilibrium, and 7T'(z,t) denote the tension of the string at position z and time ¢.

Assuming only motion in the vertical direction, the horizontal component of tensions
Ty = T(x,t) and To = T'(x + h,t) have to be the same; thus

Ty cosa =Tycosf3. (3.4)
Noting that
cosq = —— = ! = !
seca A/1+tan?a  A/1+ug(r,t)?
S 1 B 1
sec \/1+tan?B /1 +ug(x +h,t)2
T(x,t)

identity (3.4) implies that the function is constant in x (but not nec-

1+ ug(z,t)?
essary in t). Denote this constant as 7(¢). Then by the fact that the difference of
the vertical component of 77 and 75 induces the motion in the vertical direction, we

obtain that

0%

mﬁ(:c + 0h,t) =Tysin B — Ty sina = (Ty cos B) tan § — (T} cos ) tan «
= 7(t)[ua(z + h,t) — us(2,t)]

2
here we use aa—tg(a: +0h,t), where 0 < 6 < 1, to denote the average acceleration of the
segment from x to x + h. If p is the density of the string, then m = ph; hence
0*u Uz (z + h,t) — ug(z,t)
Mﬁ(%t) =7(t) 3 :

Passing to the limit as h — 0, we obtain
pgg (2, t) = 7(t)uge(x,t) . (3.5)
If there is an external forcing f acting on the string, then (3.5) becomes
prug (2, t) = T(t) (2, 1) + f(2,1). (3.6)

If 7 is constant in ¢ (which is a reasonable assumption if the vibration of the string is

very small and uniform), then (3.6) reduces to

e (,1) = i (1) + % Ft). (3.7)



u(z,0)
w(z,0)

o(z)
Y(x)

Initial conditions: { i , where ¢ and v are given functions.

Boundary conditions:
(a) Vibration string with fixed ends: u(0,t) = u(L,t) =0.
(b) Vibration string with free ends: u,(0,t) = u,(L,t) = 0.

(¢) Mixed boundary conditions: u(0,t) = u,(L,t) =0 or u(L,t) = u,(0,t) = 0.

3.2 Models with Several Spatial Variables

3.2.1 The Divergence Theorem
e The Surface Integrals

Definition 3.2. A subset ¥ < R? is called a surface if for each p € ¥, there exist an open
neighborhood U < X of p (U is the intersection of 3 and some open balls in R?), an open
set ¥ < R?, and a continuous map ¢ : U — V such that ¢ : Y — V is one-to-one, onto, and
its inverse ¢ = ¢! is also continuous. Such a pair {U, ¢} is called a coordinate chart (or

simply chart) at p, and {V, 1} is called a (local) parametrization at p.

Remark 3.3. In some literatures the surface is defined in the following equivalent but
reversed way: A subset ¥ € R? is a surface if for each p € ¥, there exists a neighborhood
UZR3of pandamap ) : V — UNY of an open set ¥V < R? onto U n' Y < R? such that 1 is
a homeomorphism; that is, 1 has an inverse ¢ = ¢~ : Y "X — V which is continuous. The

mapping v is called a parametrization or a system of (local) coordinates in (a neighborhood
of) p.

Definition 3.4 (Regular surfaces). A surface ¥ < R? is said to be regular if for each p € 3,
there exists a differentiable local parametrization {V, ¢} of ¥ at p such that ¢,; (+~'(p)) and
9 (v1(p)) are linearly independent, where

0

(U8 (w_l(p)) = ‘

)¢ and 1,9 (¢_1(P)) e

(u,0)=(q1,92)=v"1(p (u,v)=(q1,92)=v"1(p)

denote, respectively, the first partial derivative of ¢ with respect to its first and second
variable at point 1 ~'(p). The span of the two vectors 1,3 (¢ ™*(p)) and ©,5 (¥ (p)) is
called the tangent plane of X at p, and is denoted by T,X.

Remark 3.5. A vector-valued function 1 : ¥V — R? is differentiable if each component of
1 is differentiable, and the derivative of ¢, denoted by D1, is defined by

Tig) Ty

ou ' ov
Dv(@)] = |20 2

03 03
%(Q) W(Q)



Therefore, 3 is regular if for each p there exists a local parametrization {V,} at p such
that [DQ/)} has full rank at ¢~!(p) (or equivalently, [Dw} is injective at ¥ ~1(p)).

In the following, we always assume that the matrix [D¢(q)] has full rank for all

q eV if {V,9} is a local parametrization of a regular surface ¥ < R>.

Remark 3.6. Let p € ¥ and ¢ = ¢y (p). Since D1)(q) is injective, each v € T, % corresponds
a unique vector (a,b) € R? such that v = av),; (¢) + 0,2 (q). This vector (a,b) € R? satisfies
[v] = [D(g)][a,b]", and can be computed by

-1

m = ([W(q)}T[Dw(q)]) [Dy(q)] " [v].

Example 3.7. Let S? = {(m,y,z) € R3|x2 + %+ 22 = 1} be the unit sphere in R3.

If p = (x0,Y0,20) € S? then either zg, yo or 2y is non-zero. Suppose that zy # 0. Let

r=1-—+/23+y3 > 0. Define

r,y,A/ 1 —a2—y?) ifz>0,
viay) = { (i,y,— 1 — a2 —yz) if z9 <0,
Y = B((a:o,yo),r), and U = (V). Then ¢ : ¥V — U is a bijection. Let ¢ = ¢~ Then
{U, p} is a coordinate chart at p; thus S? is a surface.

There exists another coordinate chart. Let U; = S?\(0,0,—1) and Uy = S*\(0,0,1).
Define the map ¢; : Uy — R? by that ¢;(p) is the unique point on R? such that (0,0, —1),
©1(p) and (z,y, 0) are on the same straight line. Similarly, define ¢y : Uy — R? by that q(p)
is the unique point on R? such that (0,0,1), p2(p) and (z,y,0) are on the same straight
line. It is easy to check that if p € S?, then either {U;, ¢} or {Us, ¢s} is a coordinate chart
at p.

A third kind of coordinate chart is given as follows. Let U = (0,27) x (0,7), and define

Y(0, ¢) = (sin ¢ cos B, sin ¢ sin 0, cos ¢).

Then ¢ : U — S*\{(2,0,2)]0 < x < 1,2? + 2? = 1} is a continuous bijection with a contin-
uous inverse. We note that for any U = (6y, 0o + 27) x (o, o + ), ¥ is a homeomorphism
between U and an open subset of S2.

Using one of the three parametrizations above, we find that v,; and 1, must be linearly

independent; thus we find that S? is a regular surface.

ee The metric tensor and the first fundamental form

Definition 3.8 (Metric). Let ¥ < R3 be a regular surface. The metric tensor associated
with the local parametrization {V, 1} (at some point p € ¥) is the matrix g = [gap]ax2 given
by

v v
510%a 0ys

Gop = @Z”a : waﬂ = in VY

or equivalently, g = [Dv]|T[D].



Proposition 3.9. Let ¥ < R? be a reqular surface, and g = [gaplaxe be the metric tensor
associated with the local parametrization {V,v¢} (at p € ¥). Then the metric tensor g is

positive definite; that is,

2 o
Z Gosv®v” >0 Vo= Zv“’— #0.

a,b=1 =1

Proof. Since D1 has full rank on V, every tangent vector v can be expressed as the linear

o v 0 } v 0P
combination of {61/1 7 Write v = Z v 3y . Then if v # 0,

2
0< ”'U”]%{?’ - Z Z v 5w ﬁg;bﬁ Z gaﬂvavﬁ_ O

i=1a,=1 a,f=1

Definition 3.10 (The first fundamental form). Let ¥ < R3 be a regular surface, and
g = [gaplax2 be the metric tensor associated with the local parametrization {V,¢} (at
p € ¥). The first fundamental form associated with the local parametrization {V,} (at
p € X) is the scalar function g = det(g).

Theorem 3.11. Let X € R? be a reqular surface, and {V,} be a local parametrization at
peX. Then

\/g - Hwal XQ/}aQ HR3 . (38)

Proof. Using the permutation symbol (given in the next remark) and Kronecker’s delta, we

have

3 3 3
Hdm X9 H]%gs = Z( 2 é?z'jm/fj,l wkvz)( Z Eirs?" 11 wsaz)
k=

i=1 j k=1 r,s=1

3 3
= Z Z&jk&vQWﬂ PF " ¢S,2]

J,k,rs=1" i=1

3
- 2 6.]7'(5]{?8 - 5j55kr)wjal ¢k,2 wTﬂ wsﬂ )

7,k,r,s=1

l_|

where we use the identity
3
Zsijkgirs = 5jr5ks - 5]'55161" (39)
i=1
to conclude the last equality. Therefore,
3

|W>1 ><¢>2 HI%@ = Z (wjal wkﬂ ¢j>1 wkﬂ _wjal ¢k>2 wjﬂ ¢k71 )

G k=1
= 011922 — g12921 = det(g) =8g.

Finally, (3.8) is concluded from the fact that g is positive definite. =

Remark 3.12. A sequence (ky, ko, -+, k,) of positive integers not exceeding n, with the

property that no two of the k; are equal, is called a permutation of degree n. The



collection of all permutations of degree n is denoted by P(n). For 1 <i,j < n and ¢ # j, the
operator 7(; ;) interchange the i-th and j-th elements of a sequence in IP(n). For example, if

n = 3, the permutation (3,1, 2) can be obtained by interchanging pairs of (1,2, 3) twice:

7(1,3) 7(2,3)

(17273) - (3727 1) - (37 172>7

thus (3, 1, 2) is called an even permutation of (1,2, 3). On the other hand, (1, 3, 2) is obtained
by interchanging pairs of (1,2, 3) once:

(1,2,3) 29 (1,3,2);
thus (1, 3,2) is an odd permutation of (1,2, 3).

For n = 3, the even and odd permutations can also be viewed as the orientation of the
permutation (ki, k2, k3). To be more precise, if (1,2,3) is arranged in a counter-clockwise
orientation (see Figure 3.1), then an even permutation of degree 3 is a permutation in the
counter-clockwise orientation, while an odd permutation of degree 3 is a permutation in the
clockwise orientation. From figure 3.1, it is easy to see that (3, 1,2) is an even permutation

of degree 3 and (1, 3,2) is an odd permutation of degree 3.

N Y
2 3 2 3
~__ % \ S
Even permutations Odd permutations

Figure 3.1: Even and odd permutations of degree 3

The permutation symbol is a function on P(n) defined by

1 if (ky, ko, -+, k) is an even permutation of (1,2,--- n),
Erhgky =
Fka ok —1 if (ky, ko, -+, ky) is an odd permutation of (1,2,---,n).

Example 3.13. Let X be the sphere centered at the origin with radius R. Consider the local
parametrization (0, ¢) = (R cosfsin ¢, Rsinfsin ¢, Rcos ¢) with (0,¢) € V = (0,27) x
(0,7). Then

V1 (0,0) =1e(0,9) = (—Rsinfsin ¢, Rcosfsin ¢,0),
V.2 (0,0) = 14(0, ¢) = (Rcosbcos ¢, Rsinf cos g, —Rsin ¢) ;

thus the metric tensor and the first fundamental form associated with the parametrization

{V,1} are
0(0.9) = (Do [Do)0.0) = |0 B

and g = det(g) = R*sin? ¢.



ee What does the first fundamental form do for us?

Let p = 9(up,v9) be a point in . Then the surface area of the region w([uo,uo + h| x
[vo, vo + k]), where h, k are very small, can be approximated by the sum of the area of two
triangles, one with vertices 1 (ug, vg), ¥ (ug + h,vg), ¥ (ug, vo + k) and the other with vertices
W(ug + h,vy), Y(ug,vo + k), ¥(ug + h,vo + k).

Here we remark that the approximation of the surface area of a regular ¢'-surface obeys

i the surface area of w([uo, up + h] x [vg,vg + k])
im
(h,k)—(0,0) the sum of area of the two triangles given in the context

~1. (3.10)
The area of the triangle with vertices ¥ (ug, vo), ¥ (ug + h, vo), P (ug,vo + k) is

= —H( ug + h,vp) WUO;UO)) x (¢(U0>Uo + k) — WUO,UO))HRa .

By the mean value theorem, for each component j € {1,2, 3}, we have

W(Uo + h, Uo) - W(an Uo) =, (Uo + Q{h; Uo)h,
¢j(U’O7 Vo + k) - wj(u()’ UO) = 77D72 (u07 Vo + Q%k)k

for some 6 € (0,1); thus if ¢ is of class €,
Y(ug + h,vo) — P(uo, vo) = 1,1 (uo, vo)h + E1(ug, vo; h)h,
¢(Uo7 Vo + k?) - ¢(Uo, Uo) =1 (an Uo)k + Ez(“m Vo, k)ka

where F; and FE, are bounded vector-valued functions satisfying that }lLiIr(l) E;(ug,vo;h) =0
and ]lgir% E5(ug, vo; k) = 0. Therefore,

lim (¥ (uo + h,vo) — ¥ (uo, v0)) x (¢(uo, vo+ k) — 1 (uo, vo))
(h,k)—(0,0) hk

Since /g = 1,1 X1,2 ||rs, we have

1
A = 5«/g(uo,vo)hk + f1(uo, vo; h, k)hk

for some function f; which converges to 0 as (h,k) — (0,0) and is bounded since Vi

— 1,1 (1o, Vo) X ¥, (up, v9) =0.

is bounded. Similarly, the area of the triangle with vertices ¢ (ug + h,vg), ¥ (ug,vo + k),
¢<UO + h,UQ + ]{3) is

1
Ay = 5\/gmhk: + fo(uo, vo; h, k)hk .



Taking (3.10) into account, we find that
the surface area of w([uo,uo + h] x [vg, vo + k]) = /g(ug, vo)hk + f(ug,vo; h, k)hk (3.11)

for some bounded function f(-,-;-,-) which converges to 0 as the last two variables h, k
approach 0.

Now consider the surface area of ¢([a,a + L] x [b,b0+ W]). Let € > 0 be given. Choose
N > 0 such that

€
2LW

|f(u, vk, k)| < V0 < h< %,O<k’< % and (u,v) € [a,a+ L] x [b,b+ W],

and

\ZZ¢Q S T VEdA| < ifnm > N,

j=1li=1 [a,a+L] x[b,b+W]

Then for n,m > N, with (h, k) denoting (— g) (3.11) implies that

‘the surface area of ¥([a,a + L] x [b,b+ W]) — f

JEdA (
la,a+L] % [b,b+W]

||M§

Z the surface area of ¥([a + (i — 1)h,a +ih] x [b+ (j — )k, b+ jk])

- f VEdA|
la,a+L]x [b,b+W]

\‘ZZ\/ga—l—z—lhb+(y—1)k)hk—J Ve dA

j=1li=1 la,a+L] % [b,b+W]

+(ZZf(aJr(i—l)h,H(j—l)k;h,k)hk‘

j=1i=1
>3 k=
j=1i=1

The discussion above verifies the following

<5
2 2L

Theorem 3.14. Let ¥ < R3 be a reqular €1 -surface, {V, v} be a local €*-parametrization
of ¥ at p, and g be the first fundamental form associated with {V,1}. Then

the surface area of ¥(V J VgdA .

Example 3.15. Recall from Example 3.13 that the first fundamental form g of the parametriza-
tion {V, 1} of the 2-sphere centered at the origin with radius R, where

¥(0,¢) = (Rcosfsin ¢, Rsin 0 sin ¢, R cos ¢)

and V = (0,27) x (0,7), is given by g(6, ¢) = R*sin® . Therefore,

the surface area of w((O, 27) x (0, 7r)) = f R*sin ¢ d(6, ¢)
(0,27) x (0,7)

2 T
- RQJ f sin ¢ dpdf = 47 R? .
0 0



Since the difference of the 2-sphere and w((O, 27) x (0, 7r)) has zero area, we find that the

surface area of the 2-sphere with radius R is 47 R

Example 3.16. Let X < R3 be the upper half sphere; that is, 3 = {(x, y,z) € R ‘ 22+ +
22 =R% > O}, and {V,1} be a global parametrization of 3 given by

Y(u,v) = (u,v, VR —u? = v?), (u,v) €V = {(u,v) e R*|v’* +v* < R*}.

To find the surface area using this parametrization, we first compute {11 ,1,5 } as follows:

—U
R2 — 2 — 2

) and o () = (0,1, ).

R2 — 2 — 2

7%1 (U, U) = (1a 07

thus the first fundamental form associated with the parametrization {V, 1} is

2

u v )

Y 71
‘(\/RZ—UQ—UQ \/R2_u2_v2

g(u,v) = [1h,1 (u,v) X 1,2 (u,v)|s =

R2
R2 — 2 — 92"

RS

Therefore, the surface area of X is

VR2—u2 R
f dS = J dA J J dvdu
AV R2 — uQ N /R2
Al aresin " [T g m [ rdu= onR?
= JR arcsin \/ﬁ e JRT—2 u = JR mTau = 42T .

Note the the computation above also shows that the surface area of the sphere in R? with

radius R is 4rR? which is the same as what we have conclude in Example 3.15.

Remark 3.17. The example above provides one specific way of evaluating the surface
integrals: if the surface ¥ is in fact a subset of the graph of a function f : D < R? — R;
that is, ¥ < {3:7 v, f(z,y)) ’ (x,y) € D}, then ¥ has a global parametrization

O(x,y) = (v,y, fzy),  (zy)eV,

where V' is the projection of ¥ onto the xy-plane along the z-direction. Then the first

fundamental form associated to this parametrization is

2 af > |of 2
8(e,y) = ¥ (2,9) x Vo (0,9l = 1+ | @) + S @] s
thus the surface area of ¥ is
dS f\/ ‘af ‘ d(z,y) .
Example 3.18. Let C' be a smooth curve parameterized by
. o T m
r(t) = (costsint,sintsint, cost), te [—E, 5] :



The clearly C'is on the unit sphere S? since |r(t)|gs = 1 for all ¢ € [—g, g} Since C' is a
closed curve, C' divides S? into two parts. Let ¥ denote the part with smaller area (see the
following figure), and we are interested in finding the surface area of .

V4

\\V"‘?\
‘ X

To compute the surface area of 3, we need to find a way to parameterize X. Naturally we
try to parameterize 3 using the spherical coordinate. In other words, let R = (0, 27) x (0, 7)
and 7 : R — R? be defined by

(0, ¢) = (cosbsin ¢, sin 0 sin ¢, cos @) ,

and we would like to find a region D < R such that ¢(D) = X.

Suppose that v(t) = (6(t), (1)), t € [—2 2] is a curve in R such that (o) (t) = r(t).
Then for t € |0, g], the identity cost = cos ¢(t) implies that ¢(¢) = t; thus the identities
costsint = cosO(t) sin ¢(t) and sintsint = sin 0(t) sin ¢(¢) further imply that 6(t) =

On the other hand, for ¢t € [—g,O], the identity cost = cos ¢(t), where ¢(t) € (0,7),

implies that ¢(t) = —t; thus the identities costsint = cosf(t)sin¢(t) and sintsint =
sin O(t) sin ¢(t) further imply that () = 7 + ¢.

O

s .

0= §

LT O ’

Since the first fundamental form associate with {R,%} is the first fundamental form
associated with {R, ¢} is

2
g(uﬂ}) - H<¢9 X wﬁs)(uav)HRs
= H (—sin @ sin ¢, cos f sin ¢, 0) x (cos O cos ¢, sin 6 cos ¢, — sin @) H;B
= [ (= cos @ sin* ¢, — sin § sin® ¢, —(sin®  + cos” §) sin ¢ cos ¢) H]i?)

= (cos? @ + sin? 0) sin* ¢ + sin® ¢ cos® ¢ = sin? ¢,



the area of the desired surface can be computed by

L s = Lm VEdA = L LM sin ¢ dfd¢ = Lg(w — 2¢) sin ¢ d

¢=3
:(—WCOS¢+2¢COS¢—QSiD¢)‘ =7—-2.
$=0

Another way to parameterize X is to view X as the graph of function z = 4/1 — 22 — g2
over D, where D is the projection of ¥ along z-axis onto xy-plane. We note that the

boundary of D can be parameterized by

~ o T
7(t) = (costsint,sintsint), te [—5, 5} :

Let (z,y) € dD. Then z?+ y* = y; thus ¥ can also be parameterized by 1 : D — R?, where
W(ay) = (z,y,v/1-2> —y?) and D= {(z,y)]’ +y* <y}.

Therefore, with f denoting the function f(z,y) = 1/1 — 22 — y2, Remark 3.17 implies that

the surface area of ¥ can be computed by

f EFY T B A S
g g [ [
D ! 0 Joyfy—y2 1 —a? =y

1 X =\ Yy

r=n/ 2 1
= J arcsin ——— dy = QJ arcsin VY dy ;
0 1 — y?la=—/y—4? 0 I+y

thus making a change of variable y = tan? # we conclude that

s us

the surface area of ¥ = 2 J4 arcsin tan 0 d(tan® ) = 2 J4 0 d( tan® )
0 sec 6 0

=2 :9 tan? 6)925 — JOZ tan? Gdﬁ}

~2| JZ(SGCQQDd@} :2[%(tanee)(ezz]

T
4 6=0
[T T
:2——(1——)]: _9.
1 4 m

Let ¥ < R?® be a regular surface, and {V,%} be a parametrization of ¥ such that
(V) =3%. If f:¥ — Ris a bounded continuous function, the surface integral of f over X,

denoted by f fdS, is defined by
by

Lde - L(fow)\/gdA. (3.12)

In particular, if f = 1, the number J ds = J 1dS' is the surface area of X.
) )

Since the surface integrals defined by (3.12) seems to depend on a given parametrization,

before proceeding we show that the surface integral is indeed independent of the choice of the



parameterizations. Suppose that {Vi,4¢1} and {Vs, 15} are two local €'-parameterizations
of a regular surface X at p, g1, go denote the metric tensors associated with the parameter-
izations {V1, 91}, {Va, 19}, respectively, and g; = det(g;1), g2 = det(ge) are corresponding
first fundamental forms. Let U = ¢, 0 ¢);. Then the change of variables formula implies
that

J (foqu)\/@dA:J (fo¢2oW)(@oW)|J@|dA:f (fowl)(@oW)|J@|dA,
Vo V1 A%t

where Jy is the Jacobian of the map W. By the chain rule, we find that
[DU]"[(Dy2) 0 9] [(Dyz) 0 W] [DY] = [Dyn]" [Dun]
thus by the fact that g; = det ([Dv1]T[Dy4]) and go = det ([Di]T[D1bs]), we obtain that
det ([D¥])* (g0 W) = g; .

Since Jy = det ([D¥]), the identity above implies that |Jy|(,/820¥) = /g1, so we conclude
that

f (fogbl)\/gTdA:f (f o1ha)y/g2 dA . (3.13)
V1 V2

Therefore, the surface integral of f over ¥ is independent of the choice of parameterizations
of 3. In particular, the surface area of a regular ¢'-surface which can be parameterized by
a global parametrization is also independent of the choice of parameterizations.

Next, we study the surface area of general regular surfaces that cannot be parameterized
using a single pair {V,9}. Let ¥ < R3 be a regular surface, and {V;, 1;}icr be a collection
of local parameterizations satisfying that for each p € ¥ there exists ¢ € Z such that {V;, ¢}
is a local parametrization of X at p. If there exists a countable collection of non-negative
functions {(;}es defined on X such that

1. For each j € J, supp((;) = the closure of {as eX ‘ G(z) # O} c V), for some i € Z;
2. YjesGila)=1forallzeX,

then intuitively we can compute the surface area by

J ) f ¢;ds, (3.14)

where the surface integral of (; over ¥ is defined by (3.12) since supp(¢;) < ¥ (V;) and
¢; = 0 outside supp((;). In other words, each term on the right-hand side of (3.14) can be
evaluated by

J (de:f (G othi)y/gidS .

) Vi

if supp(¢;) < v(V;). Similarly, for a bounded continuous function f defined on X, the
surface integral of f over > can be defined by

fde ZJ (G f)dS =] > f@ 0 hir/2 dS . (3.15)

jeJ j€J choose one i such that
supp(¢;) S ¥i (Vi)



Remark 3.19. Defining the surface integrals of a function as above, a question arises natu-
rally: is the surface integral given by (3.15) independent of the choice of the parametrization
and the partition-of-unity? In other words, if a regular €*-surface X admits two collections
of local parametrization {U;, ; }ier and {V;,1¥;}je7, and {(;}ier and {);},c7 are €*-partition-
of-unity subordinate to {U;}icz and {V;};es, respectively. Is it true that

Z Z L.(Q’f) 0 i\/gi dS = Z Z L‘()\jf) 01h;\/g; dS,

1€ choose one i such that ]6.7 choose one j such that
supp(¢;) S i (Us) supp(Ag) S ¥;(Vj)

where g; and g; are the first fundamental form associated with the parametrization {U;, ¢;}
and {V;,¢;}, respectively.

The answer to the question above is affirmative, and the surface integral given by (3.15)
is indeed independent of the choice of parametrization of the surface and the partition-of-

unity; however, we will not prove this and only treat this as a known fact.
Now we focus on the existence of a collection of functions {(;};cs discussed above.

Definition 3.20. A collection of subsets of R" is said to be locally finite if for every point
x € R™ there exists 7 > 0 such that B(z,7), the ball centered at x with radius r, intersects

at most finitely many sets in this collection.

Definition 3.21 (Partition of Unity). Let A < R® be a subset. A collection of functions
{(;}jer is said to be a partition-of-unity of A if
1.0< (¢ <1lforall jeJ.
2. The collection of sets {supp(Cj)}je 718 locally finite.
3. X ¢i(z)=1forall z e A.
g
Let {U;};es be an open cover of A; that is, U; is open for all j € J and A < Ujejuj.

A partition-of-unity {(;}jes of A is said to be subordinate to {U;};cs (or {U;}jes has a
subordinate partition-of-unity of A) if supp(¢;) < U; for all j € J.

We note the if {(;};es is a partition-of-unity of A, then the property of local finiteness
of {supp((;)};es ensures that for each point z € A has a neighborhood on which all but

finitely many A;’s are zero.

Lemma 3.22. Let A < R" be a subset, {U;}iez be an open cover of A, and {V;}es be a
collection of open sets such that each V; is a subset of some U;; that is, for each j € J,
V; € U; for some i € I. If {V;}jes has a subordinate €"-partition-of-unity of A, so has
{ui}ieI-



Proof. Let {(;}jes be a partition-of-unity of A subordinate to {V;}jes, and f : J — Z
be a map such that V; < Uy;) (we note that such f in general is not unique). Define
Xi : R —[0,1] by

Xim) = > (). (3.16)

jef=1@)
Then clearly supp(y;) € U; and Y, x;(x) = 1 for all x € A. Moreover, since the sum (3.16)
1€l

is a finite sum, ; is of class €* for all i € Z since (; if of class €* for all j € J. Now we
show that {SUPP(Xi)}Z»eI
{supp(Cj)}jej there exists r > 0 such that #{j € J | B(z,r) nsupp({;) # &} < 0. By the
fact that f=1(iy) n f~1(ix) = & if iy # i (that is, each j € J belongs to f~1(i) for exactly
one i € 7) and that

is locally finite. Let x € R™ be given. By the local finiteness of

ye B(z,r) nsupp(x;) < ye B(x,r)nsupp((;) for some j € 1),
we must have
#{ieZ|B(z,r) nsupp(xi) # T} < #{je T | B(z,r) nsupp((;) # &} <. o

Theorem 3.23. Let . € R? be a reqular €*-surface. Then every open cover of ¥ has a
subordinate €*-partition-of-unity of X.

Proof. Let {O;}icr be a given open cover of 3. Let {U;, ¢;};c7 be a collection of €*-charts
of ¥ such that {U,};c7 is a locally finite open cover of ¥ and for each j € J, U; < O; for
some i € Z. By Lemma 3.22, it suffices to find a €¢*-partition-of-unity of ¥ subordinate to
{Uibjea-

W.L.O.G., we can assume that U; and V; = ¢(U;) is bounded for all j € J. Define
Y = goj’l. Then {V;,1;},es is a collection of local parametrization of ¥. Choose a collection
of open sets {W,},c such that W, € V), for all j € J and {@Dj(Wj)}jeJ is still an open cover

N _ N;j .
of ¥. For each j € 7, let {B,(f )}jji , be a collection of open balls satisfying W; < B,(cj)
k=1

and cl(BY) =V, for all ke {1,--- ,N;}. For je J and k € {1,--- ,N,}, with ¢;;, and 7},

denoting the center and the radius of B,ij ), respectively, let

1 ~ (4)
exp < ) ifxe B,

LGk (T) = e = ¢jplze =75 l:j)
0 it ¢ By,

Ny __
and then define x; : R* — R by x;(z) = > pm(z). Then x; > 0 in W;, and x; = 0
k=1
Ny
outside | J BY). Further define
k=1

A () = (xjopj)(x) ifzel,
’ 0 if v e U .

Then A; > 0 on ¢;(WW;) which implies that >} A; > 0. Finally, we define ¢; = A .
jeT 2ijeg Aj
Then {(;}jes is a €*-partition-of-unity subordinate to the open cover {U;}c7. o



Definition 3.24 (Piecewise Regular Surface). A surface ¥ = R? is said to be piecewise
k

regular if there are finite many curves C, - - -, C such that X\ | J C; is a disjoint union of
i=1
regular surfaces.

Definition 3.25. Let ¥ < R3 be a piecewise regular surface such that ¥ is the disjoint

union of regular surfaces ¥;, where ¢ € Z for some finite index set Z. For a continuous

function f : ¥ — R, the surface integral of f over X, still denoted by f fdS, is defined by
)
fds = J fds.

Definition 3.26. Let %s be the collection of piecewise regular surfaces in R3. The surface

element is a set function . : Zs, — R that satisfies the following properties:
1. Z(X) >0 for all ¥ € Zx.

2. If ¥ is the union of finitely many regular surfaces >q,--- , ¥, that do not overlap

except at their boundaries, then

F(D) =L (B) + -+ ().

3. The value of . agrees with the area on planar surfaces; that is,

L (P) =A(P) for all planar surfaces P.

e The flux integral

Let ¥ < R3 be a regular € *-surface with a continuous normal vector field N : ¥ — R3, and
u : ¥ — R3 be a bounded continuous vector-valued function. The flux integral of u over X

with given orientation N is the surface integral of u - N over 2.

ee Physical interpretation

Let € < R? be an open set which stands for a fluid container and fully contains some liquid
such as water, and u : 2 — R3 be a vector-field which stands for the fluid velocity; that is,
u(x) is the fluid velocity at point x € Q2. Furthermore, let ¥ < Q be a surface immersed in
the fluid with given orientation N, and ¢ : 2 — R be the concentration of certain material
dissolving in the liquid. Then the amount of the material carried across the surface in the

direction N by the fluid in a time period of At is
At - J cu-NdS'.
b

Therefore, f cu-N dS is the instantaneous amount of the material carried across the surface
b

in the direction N by the fluid.



Example 3.27. Find the flux integral of the vector field F(z,y,z) = (x,9% 2) upward
through the first octant part X of the cylindrical surface 22 + 2% = a2, 0 < y < b.

z

a

)\\ I
a// \\\\ Ib

Fist, we parameterize > by

Y(u,v) = (u,v,vVa? —u?), (u,v)eV =(0,a) x (0,b).

a2

02711,2’

Since the first fundamental form g associated with {V, ¢} is g = 1,1 x¢,2 |25 =

and the upward-pointing unit normal is N(z,y, z) = (E, 0, E), we have
a’ a

1 a 1
F-NdS=| ~(u*+d® —v?)——d(u,v :azf ——d(u,v
| | 3 o ) = | s dlu
u=aqa 2b
dudv = a’barcsin u ma

b ra
o Jo VaZ —u2 a

u=0 2

ee Measurements of the flux - the divergence operator

Let < R? be an open set, and u = (u!,u?,u?) : Q — R3 be a € vector field. Suppose that
O is a bounded open set of class €' such that O < Q with outward-pointing unit normal
vector field N = (Ny, Ny, N3). Then the flux integral of u over dO in the direction N is

f u-NdS.
00

Consider a special case that O = B(a,r) for some ball in R? centered at a = (ay,az,as)

with radius r > 0. We first compute f uN3 dS. Consider

0B(a,r)
Vi (1, 32) = (21,22, a3 + N2 — (21— a)? — (20 — a2)?) (x1,22) € D(a,r),
Y (29,19) = (xl,xg, as — \/7"2 — (1 —a)? — (x2 — a2)2) , (x1,22) € D(a,r),

where D(a,r) is the disk in R? given by {(z1,22) € R? | (z1 — a1)? + (22 — a2)? < r?}. Since
0B(a,r)\(¢1(D(a,r)) U _(D(a,r)) is the equator of the sphere d B(a,r) which has zero

area, we must have

f u3N3 dS = f u3N3 dS + f u?N3 dS .
oB(a,r) ¥4(D(a,r)) Y- (D(a,r))



Note that (N oty )(xy,22) = ! (¢4 (21, 22) — a). In view of Example 3.16, we have

-
f U3N3 dS
¥+(D(a,r))

= 3 \/T2 - (1'1 - (11)2 - (IZ‘Q — a2)2 r A
JD(‘N") W lo, 22) r V2 = (1 — a1)? — (w2 — a2)?

= J U3(¢+(371, Tg)) dA,
D(a,r)

and similarly,

f u*N3dS = — f ud(p_ (1, 22)) dA .
¥+ (D(a;r)) D(a,r)

Therefore,

f u*Ny dS = J [0 (Vi (21, 22)) — w? (Y (21, 22))] dA
0B(a,r)

D(a,r)

az+4/r?—(x1—a1)?—(r2—a2)? oud
:J (J U (a,00,5) ) A
D(a,r) agf\/r27(11fa1)27(nga2)2 01‘3

3
= J o dz .
B(a,r) oxs

Similarly,

1 2
J u'N, dS = J % 4z and J u2N, dS = f o g
0B(a,r) B(a,r) dw 0B(a,r) B(a,r) 02

thus we conclude that

3 .
out

u-NdS:f dz . (3.17)
LB(aJ‘) B(ar) ; 0w

The computation above motivates the following

Definition 3.28 (The divergence operator). Let u : Q € R* — R® be a ¢! vector field.

The divergence of u is a scalar function defined by
2o’
divu = .
ivu ;‘1 Eh.
Definition 3.29. A vector field u : Q € R” — R" is called solenoidal or divergence-free if
dive = 0 in Q.

Remark 3.30. Let Q < R3 be an open set, and u : @ — R? be a € vector field. Using
(3.17), by the continuity of diva we conclude that

1
lim ———— u-NdS = (divu)(a) VaeQ,
=0 |B(a,7)| JoB(ar)

473

where |B(a,r)| =

instantaneous amount (per volume) of material (with concentration 1) carried outside an

is the volume of B(a,r). In other words, divu at a point x is the

infinitesimal ball centered at z.



e The divergence theorem

Theorem 3.31 (The Divergence Theorem). Let Q < R" be a bounded domain such that

0Q is piecewise smooth, and w = (wy,--- ,w,) € €*(Q) with outward pointing normal N.
Then
J divwdzx :J w-NdS.
Q 00

3.2.2 Equation of continuity

Let u be the concentration of some physical quantity (v = wu(z,t)) in a domain Q < R",
and let F' be the flux of the quantity; that is, F'- N dS is the flow rate of the quantity that

passes through an area dS in the direction N (outward pointing) normal to dS. Then

d
— udx:—J F-NdS—i—fqda: foralld < Q,
dt Jy ou u

where ¢ is the strength of sources for the quantity. If u is smooth, by the divergence theorem,

Jutd:p:J(q—divF)dx = J [uy + divF — ] dz =0
u u u

for all open domains U with piecewise smooth boundary 0U. We then obtain the equation

of continuity u; + divF = q.

e The conservation of mass

Let o(z,t) and u(x,t) denote the density and the velocity of a fluid at point x at time ¢.
Then the density flux F' = pu, and the equation of continuity reads

ot +div(ou) =0 VeeQ,teR. (3.18)

In particular, if the density of a fluid is constant (incompressible fluid), then the velocity w

of this fluid must satisfy
dive =0 in Q. (3.19)

3.2.3 The heat equations

Let 9(x,t) defined on Q x (0,7T] be the temperature of a material body at point = € € at
time t € (0,7], and c(z), o(z), k(x) be the specific heat, density, and the inner thermal
conductivity of the material body at x. Then by the conservation of heat, for any open set
UucQ,

d (x)o(x)¥(z,t) dx = J k(x)VI(z,t) - N(z)dS, (3.20)

— | ¢
dt Jy ou

where N denotes the outward-pointing unit normal of /. Assume that u is smooth, and U

is a domain with piecewise smooth boundary. By the divergence theorem, (3.20) implies

L c(x)o(x)Vy(z,t) de = f div(k(z)VI(z, 1)) dz.

u



Since U is arbitrary, the equation above implies
c(x)o(x)(z,t) — div(k(x)VI(z,t)) =0 YzeQ, te(0,T].

If k£ is constant, then

3219
—ﬁt A9 = Z -y
If furthermore ¢ and g are constants, then after rescaling of time we have

ﬂt:A’ﬁ

(3.21)

This is the standard heat equation, the prototype equation of parabolic equations.

We need complementary conditions to specify a particular solution of (3.21):

1. Initial condition: ¥(z,0) = Jg(x), where Jg(x) is a given function.

2. Boundary condition: if 0€) # ¢, some boundary condition of u at z € 0€2 for all time

have to be introduced by physical reason to specify a unique solution.

(a) Dirichlet condition: ¥(x,t) = g(z,t) for all x € 0Q and t > 0, where g is a

function.

given

(b) Neumann condition: @ =0 for all z € 0Q and ¢ > 0, where w9 _ N - V4 and

ON ’ 0N

g is a given function.

v
(¢) Robin condition: + hu = g for all z € 02 and ¢t = 0, where h and g are

functions.

0

3.2.4 The wave equations

Consider the membrane (of a drum) as a graph of a function z = u(xy, z3) for (zq, x9

Suppose that the energy stored in the membrane is given by

E(u):J T(j—z—QdA LT(W—UOZA,

given

) € Q.



where T is called the tension of a membrane. In other words, to deform a membrane from
its unforced equilibrium state to a surface S given by z = u(x1, ) requires the input of the
energy shown above.

Question: If the deformation of the membrane is due to a small external force f, what is
the relation between f and u?

Suppose that an small external force af = af(zy,x2) is suddenly exerted onto the
membrane (so that the total force added on the membrane is f + af), and the membrane
deforms to the surface z = (u + au)(zy,x2) slowly. We note that af is a function of
au and af — 0 as au — 0. Then the extra energy needed to deform the membrane is
E(u+ au) — E(u), while this extra work is done by the force f + af given by

L(HAf)Audx.

Therefore,
E(u+ au) — E(u) = f (f +af)audz.
Q
Let ¢ be a given € function and au = tp. Then if ¢ # 0,

E(u+ty) — E(u)
t

Zf(eraf)sod:c-
Q
Since af — 0 as t — 0, we find that

lim E(u+ty) — E(u) _J fods.
Q

t—0 t

(3.22)

On the other hand, assuming that u is a smooth function,

E —F 2 _ 2
SE(u: ) = lim ZUF ) Z By [ VI Vet Vel = VIH VUl

t—0 t t—0 Q t
0 Vu -V
= T(— —T dA
JQ ot V14 |Vul?
. TpVu . TVu
= dlv(i) dA — J le<7> dA
JQ \/1+‘VU|2 QSO «/1+!Vu|2

where we have used div(¢F) = @divF + F - Vp to conclude the last equality. By the

VIt|Vu+ thpP) dh=| T
Q

t=0

divergence theorem, with N denoting the outward-pointing unit normal on 0€2,

SE(u; ) = ToVu NdA — JQ gpdiv<i> dA;

sa /14 Va2 1+ [Vul?

thus (3.22) implies that

JQ [div<i> -l—f] @ dA—f T Ou @wdA =0 for all ¥'-function . (3.23)

1+ |Vul? sar/1+ [Vul2 IN

In particular,

J [div(Tiw) + f} @dA =0 for all ¢*-function ¢ that vanishes on 0. (3.24)
Q

V14 |Vul?



The above identity implies that
div<T7W> L f=0 in Q. (3.25)

V14 |Vul?

Therefore,

1. If the membrane is constrained on the boundary; that is, the boundary of the mem-

brane is fixed (for example, u = 0 on 0€2), then u satisfies that

TVu
div(——2 ) = n Q. 3.26
1V< = |Vu|2> f in (3.26a)
u=>0 on 0f). (3.26b)

2. If the membrane is not constrained on the boundary (such as the banners), then (3.23)
and (3.25) imply that

T ou

————————@dA =0 for all € -function ¢.

o0 /LT [Va? IN” 7
Therefore, g; = 0 on 02 (where we assume that 7' > 0 everywhere) which shows

that u satisfies
. TVu .

—le(m) - f m Q, (327&)
% =0 on O0f). (3.27Dh)

Remark 3.32. If v = 0 on the boundary, we will not have an extra boundary condition
(3.27b) (even though at the first glance it seems the case) since if v = 0 on €2, then all
possible displacement au should also satisfy that au = 0 on 0€2; thus ¢ also has to vanish
on 0% in the derivation of (3.23). In other words, if the membrane is constrained, instead

of (3.23) we should obtain (3.24) directly.

Remark 3.33. By expanding the derivatives, we find that
div(T 1
v TVu )= VIVY) gy oy
A1+ |Vul? V14 |Vul? A1+ |Vul?
_ div(TVu) e ZQI uggiugcjmcmj3 ‘
V14 |Vul? i1 V1 [Vul?
Therefore, if |[Vu| « 1 (which is a valid assumption for the case of drums), we find that
.V( TVu
V14 |Vul?
thus (3.26) can be approximated by
—div(TVu) = f in Q,
=0 on 0.

> ~ div(TVu);

u
while (3.27) can be approximated by

{ —div(TVu) = f in Q,

ou (N)
N - 0 on 0f).



e Equation for vibrating membrane

Let T be the tension, ¢ be the density, and f be the density of the external force which may
depend on x and t.

d’Alembert’s principle:

J [—TVu Vo+ (f - gutt)cp} dr =0
Q
for all ¢ compatible with the existence constraints. Therefore,

1. Membrane fastened on the boundary:

ouy — div(TVu) = f in Qx(0,7],
u=gqg on 0Q x (0,77,
u(z,0) = g(z), uz,0) = h(z) for all z € Q.

2. Membrane with free boundary:

ouy — div(TVu) = f in Qx (0,7,
Cu _ 0 on 0Q x (0,T]
ON Y )
u(z,0) = g(z), uz,0) = h(z) for all x € Q.

3.2.5 The Navier-Stokes equations

Aside from the equation of continuity (3.18), at least an equation for the fluid velocity wu is
required to complete the system. Consider that conservation of momentum m = pu. By
the fact that the rate of change of momentum of a body is equal to the resultant force acting

on the body, the conservation of momentum states that

if mdx:—f m(u-N)dSnLJ adS—kffda:, (3.28)
dt Jy ou ou u

where N is the outward-pointing unit normal of 0U, f is the external force (such as the

gravity) on the fluid system, and o is the stress (& # ) exerted by the fluid given by
o = 2uDefuN — pN |

where p is called the dynamical viscosity (which may depend on w) and Defu, called the

rate of strain tensor, is the symmetric part of the gradient of u given by

ou’ 5uj>
&xj 6:@ '

(Defu);; = %(

In other words, if & = (01, 09, 03), then

2 sout 0w




Assuming the smoothness of the variables, (3.28) and the divergence theorem imply that
for each 1 <7 < 3,

[ +2 o) j&[ (aui+auj)]+f.]dx—0
g ox;j 636, = 15xj H oxj  0x; ! -

for all regular domain U < €). As a consequence, we obtain the momentum equation

(ou): + div(pu ® u) + Vp = div(uDefu) + f in Qx(0,00), (3.29)
3, daj
where for a matrix a = [a;;], (diva); = >, —2.
j=1 aﬂfj

e Newtonian and non-Newtonain fluids
1. Newtonian fluids: the viscosity p is a constant.

2. Non-Newtonian fluids: the viscosity p is a function of w.

Consider the Newtonian case. If the fluids under consideration is incompressible, we let
o =1 and (3.19) and (3.29) together imply the Navier-Stokes equations

u+u-Vu+ Vp =pAu+ f in Qx(0,7T), (3.30a)
dive =0 in Qx(0,7T), (3.30b)

where we have used the incompressibility condition (3.19) to deduce that
3 ; 3 3

0 ou' 0uj o (out  ouw
Z&[ ( 0961)]_”;5%-(6% 61'Z> Z

Initial conditions: u(x,0) = uy(z) for all z € Q.

= pAu’ .

g7[\')

Boundary condition:

1. No-slip boundary condition: u = 0 on 0f).

2. Navier boundary condition: w-N =0 and N x (uDefuN) = a(N x u) on 02 for
some constant a > 0. This condition is based on the assumption that the traction

force due to the viscous effect is proportional to the fluid velocity on the boundary.

e Some brief introduction about stress/traction

e What is the stress/traction?

Let X be a small piece of surface centered at x with area d A and “outward-pointing”
unit normal n. The stress exerted by the fluid on the side toward which n points on
the surface X (n “Tdp e cie - RISV 6 X A el ) is defined as

O0F

where  F is the force exerted on the surface by the fluid on that side (only one side

is involved).




e General properties of the stress:
1. For a unit vector n = (ny,ns,n3), o(x,t,—n) = —o(x,t,n).
2. At a given point z, suppose that o(z,t,e;) = 71,61 + To€s + 735€3 for 1 < j < 3,
where {ej, e, €3} is the standard basis of R?* and 7;; = 7;;(«, ). Then
3
U(.T, t> n) = U($, t? el)nl + O'(x, ta e2)n2 + O'(I', ta e3)n3 = ( Z Tijnj)ei (*)
ij=1
or equivalently,
Tir Ti2 T3 ni
o(x,t,n) = [To1 Too Toz| |2
T31 T32 733 ns

3. By the conservation of angular momentum, 7;; = 7j; for all 1 <4,j < 3. In other

words, the matrix (called the stress tensor) 7 = [7;;] is symmetric.

e, A A A

€3

v

(a) (b) (c)
Figure 3.2: (a) On each side orthogonal to the coordinate axis, the stress is given by o(—e;) =
ZBZ oije;. (b) On the “slant” side, the stress is given by o(n) = t,, = t,1€1 + t,0€2 + ty3es.
Z:)l By force balances, o(n)A, = o(e1)A; + o(ey) Ay + o(e3) Az which leads to (x).

e The reason why 2uDefuN appears in the expression of o:
1. Suppose that ¥ is the xy-plane, n = (0,0,1), and u = (u,0,0). The larger the

0 . . .
value 5—“, the larger the traction due to the fluid; thus the traction should be
T3
. 0 . . L :
proportion to a—u Suppose that the traction, without considering the effect of
3

pressure, is u;;s. Then o = uﬂel.
2. If n=(0,0,1) but instead u = (u,v,0), choose a constant unit vector such that
O(u-e)A ou

u = <U‘/e\1)/e\17 then g = /,LT:USel - MT%

3. When n is arbitrary, by the fact that ai is the directional derivative in the
3

direction m when n = (0,0, 1), it is naive to imagine that o = u(Vu)n.

4. Since the stress tensor has to be symmetric, we have o = 2uDefun.




3.3 Solving PDE using matlab®

The PDEs in the models that we derived above are of the form
u = A(u) + f or uy = A(u) + f (3.31)

for some differential operator A; that is, for a given smooth function u, A(u) is some
functions of partial derivatives of u with respect to x. We are not going to talk about
numerical method of solving PDEs (which is a big topic), but instead try to make use of
the ODE solver (such as ode45 in matlab) which requires that we write A(u) in terms of
the value of u (so that the right-hand side of (3.31) can be expressed as ¢(z,t,u)). We note
that computers view functions as a map whose values are known on just discrete points (of
interests), so to find a numerical solution u to the PDEs above is to find the “approximated”
values of u on a given set of discrete points. Therefore, in order to make use of the ODE
solver to solve the PDEs above, we only need to know how to compute the partial derivatives
of u w.r.t. x in terms of the values of v on discrete points.

Caution: Making A(u) in terms of values of u at discrete points does not always work to

solve PDEs numerically!!!

e Central differences

Recall the Taylor Theorem that if w is a (n + 1)-times differentiable function in z,

C w(k)(f) k w(nﬂ)(f) n+1
w(x—i—h):kz_o X h" + 1) R

where £ is a point between x and = + h. Now suppose that we are interested in the value of

the solution u on the set of discrete points which consists of a regular partition P = {O =
. L .
To < T < Ty < --- <z, = L} of [0,L]. Write [P| = h = = and assume that the solution
n

w is four times continuously differentiable in z. Then for x being one of z}s,

w(z 4+ h) =w(x)+ hw'(z) + ;w”(a:) + %311)’”(:1:) +O(hY),
w(z —h) =w(x) —hw'(z) + %w”(a:) - %w’”(:c) +O(hY),

where the notation O(h*) means that it is a function of h and the quotient of this function

and h* is still bounded (when A is close to 0). More generally,

g(h) = O(h*) (as h — 0) if and only if %‘ < M (when h is close to zero).
Therefore,
w'(z) = w(x + h)Q—hw(:c —h) Lo,
—9 _
w'(z) = W Z2wl@) Fwle Zh) e

h2



In other words, if w is four times continuously differentiable in x, the first and second
derivatives of w at x can be made as accurate as possible using the values of w at = £ h and

x by making h small enough. The finite difference scheme

, Nw(m%—h)—w(w—h) " Nw(
w'(x) ~ 57 and w’(z) ~

x+h)—2w(z)+w(x—h)
72

(3.32)

of finding the approximated value of the first and second derivatives of w is called the central

difference scheme.

Remark 3.34. If w is only three times continuously differentiable in x, then

W' () = w(x+h)2—hw(x— h) L OWm).
W' () = w(z + h) — 2u;l(2x) +w(x —h) o).

Remark 3.35. Let Aj, be an operation defined by the following: if w is a function of z,

then A,w is a function given by

w(x—I—h)—w(x—h)'

(o) (z) = x
Then
Arw)(x + % — (Arw)(x — %
B3u)e) = @y aguye) = r D - Gela )
w(x+h) —w(x) w(x)—w(@-—nh)
_ h B h _ w(x + h) — 2w(z) +w(z — h)
h B2

which shows that the central difference scheme of computing the second derivative is the
same as applying the central difference scheme of computing the first derivative twice (but
with difference mesh size).

3.3.1 The 1-dimensional heat equations

We first consider the 1-d heat equations with Dirichlet boundary condition

Uy — k0 = f(2,1) in (0,L) x RT, (3.33a)
U =1y on (0,L) x {0}, (3.33b)
9(0,t) = a(t), I(L,t) = b(t) on {0,L} xR*. (3.33¢)

Let {0 =29 < 21 < -+ < @41 = L} be a regular partition of [0, L], and h = L/(n+1).
Define ¢;(t) = ¥(z;,t) and f;(t) = f(x;,t). Then (3.33) implies that

de; K

e ﬁ(%ﬂ —20; + 0i_1) = fi(t) + O(h?) foralll<i<nandt>0,

©i(0) = Jo(z:) forall 1 <i<n,
Vo(t) = a(t), nyi(t) = (1) forallt >0,



where 1y is a given function independent of ¢, and a, b are given constants. Therefore,

naively we look for the solution to the ODE

B ¢1(t) T —2 1 0 -+ e e 01T ¢1(t) 7 _a(t)_ B fl(t) 7
ng(t) 1 =2 1 0 - cov e 0 ¢2(t) 0 f2(t)
¢3(t) o 1 -2 1 0 - - 0 5(t) : :

d : k0 e s 0 0 : L : n :
% R R E e 0 : he | :

Pn—2(1) 0 - 0 1 =21 0/ |¢oo2(t) : :

Gn_1(t) 0O -+ -«+ -+~ 0 1 =21 Pr_1(t) 0 fruo1(t)

[ ult) | 0 o 001 =2 Lon) ] O] L Fa(®)

with initial condition
T T
[61(0) ¢2(0) -+ ¢a(0)] = [Vo(w1) Vo(w2) Do(2)]
and treat ¢;(t) as an approximated value of ¢;(t).
Example 3.36. Now suppose that we look for the numerical solution of
Vy(2,1) — Vpp(z,t) = 2% sint forall 0 <z <landt >0,
Y(z,0) =1+ x + sin(mz) foral 0 <z <1,
9(0,t) =1, 9(1,t) =2 forallt>0.
We first input the function f(z,t), Jo(x,t), a(t) and b(t) as follows:
function output = forcing(x,t) function output = theta_0(x)
output = x.A2%sin(t); output = 1 + x + sin(pi*x);
function output = a(t) function output = b(t)
output = 1*ones(size(t)); output = 2*ones(size(t));

Next we provide the function “heat_ RHS” as “ODE_RHS” before. Here the values «, h,

R R R 0
1 =2 1 0 - een e 0
o 1 -2 1 0 - - 0

: 0 0 0 . .
and the matrix K = will be part of the inputs (so that

- 0
0 0 1 -2 1 0
0 0o 1 -2 1

0 0 1 -2

we do not have to adjust them every time we modify the equations and the data).

function yp = heat_ RHS(t,y,kappa,h,K)

n = length(y);

x = [h:h:in*h]’;

yp = kappa/hA2*(K*y + [a(t);zeros(n-2,1);b(t)]) + forcing(x,t);




Finally, we have the main code as follows:

L=1

n = 10;
kappa = 1;

h =L/(n+1);
T end = 1;

x = [h:h:n*h]’;

K = —2*eye(n) + diag(ones(n-1,1),1) + diag(ones(n-1,1),-1);

[t,y] = oded5(Q(t,y) heat_ RHS(t,y,kappa,h,K),[0 T_end],theta_0(x));
y = [a(t),y,b(t)]; % adding the values of the solution at the end-points
x = 0:h:(n+1)*h;

plot(x,y(end,:),’b’);

Here we use the command “eye” and “diag” to produce the matrix K. We remark that
“eye(n)
produce an m x m matrix whose k-th diagonal is the vector V, where m = length(V') + k.

bM

will produce an n x n identity matrix, and for a given vector V' “diag(V k)” will

We also note that each row of y, obtained using the ODE solver in the penultimate (iF]# %
=) line of the codes, provides the approximated value of ¢ at xy,--- ,x, at each sampled
time, so the last line of the codes is to add ¥(0,¢) and ¥(L,t) into the solution (for the
purpose of plotting the solution).

If one wants to see the evolution of the solution, we can do the following:

x = 0:h:(n+1)*h;
figure(1)
for j=1:length(t)
plot(x,y(j.:),’b");
drawnow; % force matlab to run the for loop

end;

3.3.2 The 1-dimensional wave equations
Now we consider the 1-d wave equations with Neumann boundary condition
Uy — CUiye = f(2,1) in (0,L) x R™, (3.34a)

U= ug, U = Uy on (0,L) x {0}, (3.34b)
uz(0,8) = a(t), u.(L,t) = b(t) on {0,L} xR*. (3.34c)



For an 1nteger n = 2, define h =

for 1 <i < n. Then (3.34a) and the central difference scheme (3.32) imply that

L : and z; = (1 — 1)h for 1 < i < n. Let v;(t) = u(x;, t)

2
dv; 2l 20; + v

o s = fi(t) + O(h?) forall2<i<n—landt>0. (3.35)

where as in the previous section f;(t) = f(z;,t). Unlike the case of PDEs with Dirichlet

boundary condition, now vy (t) = u(0,¢) and v, (t) = u(L, t) are also unknown, so to complete

dvy d
the system we need to know how to compute E and ;}t"

Let ©9 = —h and z,41 = L + h. Using the central difference scheme (3.32), (3.34c)
implies that

(g, t) — u(zo, t) 5
o +O(h7),

w(Tpi1,t) —u(zp_1,t)
2h

a(t) = uz(xy,t) =

b(t) = ug(x,,t) = + O(h?).

Therefore, even though u(—h,t) and u(L+h,t) are meaningless objects (since u is a function
defined on [0, L]), it is reasonable to assume that u(xg,t) = u(xz,t)+O(h3) and u(x,1,t) =
uw(x,_1,t) + O(h?). Using the central difference scheme (3.32), we obtain that

ta(1.1) = u(xy + h,t) — 2u(2321,t) +u(zr —ht) %[02(0 ()] - %a(t) Lo,
g (. 1) = u(z, + h,t) — 2u(2:;1, t) + u(z, — h,t) 52 (ona(t) = val8)] + %b(t) oM.
thus
o2 vy — 1) = fi#) + Oh),
d?*v, 22

2 —5 (Vp—1 —vn) = fu(t) + O(h).

Similar to the derivation in Section 3.3.1, naively we consider

B Vl(t) T —2 2 0 -« e e L 07T Vl(t) 7 _—a(t)_ B fl(t) T
Va(t) 1 =2 1 0 o o ee 0| va(t) 0 fa(t)
vs(t) 0 1 -2 1 0 - --- 0 v3(t) : :

d? : Al 0 .. .0 - 0 : c?
a| | PO e i

Vin—2(t) 0 0 1 =2 1 0| v : :
Vn-1(t) 0 v o oo 0 1 =2 1| |[vaoi(® 0 Fr1(t)

| Vn(t) i | 0 -+ o .. o 0 2 _2_ i Vn(t) ] i b(t) ] i fn(t) ]

with initial conditions
[v1(0) va(0) va(0)]" = [uo(z1) wuo(z2) uo(zn)]”



and treat v;(t) as an approximated value of v;(t). We note that in order to use the ODE

solver to solve the ODE above, we need to assign w = v’(t), where v = (vq,---,v,)T, and

“lstn] = [10 C;)K] o)+ Lsto] (330

hQ

write the system above as

t[o)-
il — |2
dt |w ﬁKfv

where I, is the n x n identity matrix and f = (f1, -+, fn)T.

Once (3.36) is obtained, it should be straight forward, as in the case of solving heat
equations, to solve the ODE system numerically using the ODE solver. Here we only

provide the code of the right-hand side function:

function yp = wave_RHS(t,y,c,h,K)
n = length(y);
x = [0:h:(n-1)*h]’;

yp = cA2/ha2*[eye(n), zeros(n,n); zeros(n,n),K|*y + [zeros(n,1);forcing(x,t)];

while K should be provided in the main code as

K = —2*eye(n) + diag([2;ones(n-2,1)],1) + diag([ones(n-2,1);2],-1);

We note that the first n rows of the solution y obtained using the ODE solver corresponds
to the approximated value of u at {zi,---,z,}, while the rest n rows of y corresponds to

the approximated value of u; at {z1, -, z,}.

3.3.3 The 1-dimensional conservation laws

We have to warn the readers that the usual central difference scheme (to approximate the
partial derivatives w.r.t. x) together with the ODE solver is not a useful tool of solving the
PDEs from conservation laws. In order to demonstrate this fact, we look at the numerical

solution of the equation

ur + uy = gz, t) in (0,L) x (0,7), (3.37a)
u(z,0) = ug(x) on (0,L) x {t=0}, (3.37b)
u(0,t) = u(L,t) =0 forall t > 0. (3.37c)

Let P={0=1z9 <z < - < xpy1 = L} be a regular partition of [0, L], h = L/(n+ 1),
and define w;(t) = u(z;,t) for 0 <i < n+ 1. Then (3.37) implies that

du;

dt

Using the central difference scheme (3.32) to approximate u,(z;,t), we find that

du; + Uir1(t) — ui—1(t)
dt 2h

+ ug(x;,t) = q(x;, t) forall 1 <i<mandt>0.

= q(x;,t) + O(h?) for all 1 <ilen and t > 0




where uy(t) = u,41(t) = 0. The ODE above motivates the following ODE

U1 0 _]_ O O v ql(t)
U2 1 0 —1 0 .o oo U2 q2(t)
v . v, qs(t
’ 01 0 -1 0 .- ’ 3,( )
d N N
dt - 2h
: 0 1 0O -1 0 (t)
Up—2 . Up—2 gn—2
Un—1 ’ 0 1 0 —1 Up—1 Qn—l(t)
| v, | 0 - o e 0 1 0] [ va | _qn(?f)_

with initial condition

[020) 02(0) -+ 0,(0)]" = [uo(x1) wolza) - wol,)]"

and treat v;(t) as approximated value of w;(t). So the main code is

L=10

n = 100;

h =L/(n+1);
T _end = 10;
x = [h:hi*h)’;

K = diag(ones(n-1,1),-1) - diag(ones(n-1,1),1);

[t,y] = oded5(Q(t,y) cl_RHS(t,y,h,K),[0 T_end],u_0(x));

y = [zeros(size(t)),y,zeros(size(t))]; Y0 adding the values at the end-points

where cl_RHS is given by

function yp = cl_RHS(t,y,h,K)

n = length(y);

x = [h:hin*h]’;

yp = 1/(2*h)*K*y + source_q(x,t)];

Example 3.37. We first consider the case L = 10, q(z,t) = (x— L) cos z sin t+sin(x) sin(t)+
(x— L) sin(z) cost and uy = 0. We note that the solution is indeed u(z,t) = (x — L) *sin(z) »
sint (which is a smooth function so that the central difference scheme (3.32) provides good
approximation of the derivatives). Knowing the exact solution of the PDE enables us to

compare the numerical solution and the exact solution.
We still need

function output = source_q(x,t)
output = (x-10).*cos(x)*sin(t) + sin(x)*sin(t) + (x-10).*sin(x)*cos(t);




and

function output = u_0(x)

output = zeros(size(x));

to run simulations. To see the outcome, we use

x = 0:h:(n+1)*h;

figure(1)

for j=1:length(t)
plot(L/2,30,7); % this is to fix the windows
hold on;
plot(L./2,-30,”); % this is to fix the windows
plot(x,(x-L).*sin(x)*sin(t(j)),r");
plot(x,y(j,:),’);
hold off;
drawnow; % force matlab to run the for loop

end;

You should be able to see that the numerical solution is on top of the exact solution (which
should imply that there is no bug in our code).

We next consider the case L = 10, q(z,t) = x(x — L) cost + (2o — L) sint and uy = 0.
The exact solution is u(z,t) = x(z — L) sint. Now we modify the function source_q and the

exact solution in the comparison of the numerical solution and the exact solution as follows:

function output = source_q(x,t)
output = x.*(x-10).*cos(t) + (2*x-10)*sin(t);

and change the line in magenta by

plot(x,x.*(x-L).*sin(t(j)),’r);

You will see a sawtooth like graph of the numerical solution, while the exact solution is still
smooth.

Finally, you can change the source to

function output = source_q(x,t)
output = abs(x-5)-5;

and you will find that the numerical solution becomes a garbage immediately.



3.3.4 Built-in PDE solver in matlab®

There is a built-in solver for PDE in matlab®. The PDE has to be of the form

0%u ou . .
mﬁ + da — le(CVU) + au = f mn Q, (338)

where either the Dirichlet, Neumann or mixed type boundary condition can be imposed.
The unknown u can be a scalar or vector-valued function.

The main tool of solving PDE of form (3.38) in matlab® is the command “solvepde”.

Keywords to check in matlab®:

1. solvepde

2. Parametrized Function for 2-D Geometry Creation
3. generateMesh

4. applyBoundaryCondition

5. setlInitialConditions

6. Coefficient for specifyCoefficients

7. Coefficient Assignment Properties



Chapter 4

Optimization Problems and Calculus
of Variations

4.1 Examples of Optimization Problems

4.1.1 Heron’s Principle

Given a straight line L and two points a, b on a plane P, find a point x on L such that

|az| + |bx| is minimal.

Theorem 4.1. If  is a point of L such that the sum |az| + |bx| is the least possible, then

the lines az and bx form equal angles with the line L.

4.1.2 Steiner’s Tree Problem

The Steiner tree problem is superficially similar to the minimum spanning tree problem:
given a set V' of points (vertices), interconnect them by a network (graph) of shortest
length, where the length is the sum of the lengths of all edges. The difference between
the Steiner tree problem and the minimum spanning tree problem is that, in the Steiner
tree problem, extra intermediate vertices and edges may be added to the graph in order to

reduce the length of the spanning tree.

4.1.3 Dido’s Problem (Isoperimetric Problem)

For a simple closed curve C' in the plane, let ¢(C) denote the length of the curve. The
isoperimetric problem is to find a curve C' satisfying ¢(C') = L which encloses the largest
area.

If A(C') denotes the area enclosed by the curve C, then the isoperimetric inequality

provides that
((0)* = 47 A(C) for every simple closed curve C', (4.1)

and “=" holds if and only if C' is a circle.
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Sketch of the proof. Let &2, denote the collection of simple closed polygon with 2n sides
and with length L. We look for one P in &7, which encloses the largest area. Let

Pn - [AlaAQa"' 7An7An+17"' 7A2naA1]

be a polygon in &, which encloses the largest area. We use the notion A; = Ay if j = k
(mod 2n).

Claim I: P, is convex.

Claim II: For all j e N, [A;A4;1| = |4A;114;10].

Claim II: For all j € N, [A;, Ajpq, -, Ajn, Aj] and [Ajin, Ajintr, -, Ajion, Ajin] en-
closes the same area.

Claim 1IV: For 1 < ] <n-+ 17 AlAj s AjAn+1 at Aj.

Proof of Claim IV: If A;A; is not perpendicular to A;A,+; at A;, we can adjust the
position of A; to A}, and adjust accordingly the positions of Ay, -+, A;j 1 to Ay, -+, A} so
that the polygon [A;, Ag, - -+, Aj, A] is the identical (in shape) to [A}, Ay, -+, AL, Ay, AY].

We note that the area enclosed by the polygon [A},--- AL |, Aj, Ajy, - Ay, AY] s

larger than the area enclosed by the polygon [Ay, -, Ani1, 41]. (End of proof of Claim IV)

By Claim IV, A’s locates on a circle (with diameter |A; A, 1]). Let 7, be the radius of

the circle in which P, is inscribed. Then 4nr,, sin % = L and the area A,, enclosed by P, is

thus A, 41 = A, for all n € N (Exercise!). The circle C' with radius r has length L and

encloses the largest area among all simple closed curves with length L and L? = 47 A. =

On the other hand, the minimization problem can be reformulated by looking for “min-
imizer” in the space of piecewise differentiable closed curve; that is, we look for curves C
that can be parameterized, using the arc-length, by vector-valued function (z(s),y(s)) in
the set

A={(@(5),y(5)) |2,y € 2'((0, LI R), 2(0) = 2(1),5(0) = y(1), #*(s) + #*(s) = 1},

where 2'([0,1]; R) consists of continuous, piecewise continuously differentiable functions on

[0, L]. Then the problem above is equivalent to the minimization problem

min J [z(s)y(s) — &(s)y(s)] ds.

(z,y)eA Jo

4.1.4 Minimal Surface of Revolution

This is a problem of finding a curve C' connecting (g, yo) and (x1,y1), where xg < 1, such

that its surface of revolution has the least surface area. Given a function y = y(z) satisfying



y(xo) = yo and y(xy) = y1, the surface of revolution of the curve C' = {(x,y(x)) |y :
[z, 1] — R is differentiable, y(zo) = yo, y(z1) = 1} is given by

L1
ﬂf y\/ 1+ y”?(x)dx .
zo

Therefore, the problem of minimal surface of revolution is to find a function y € A = {y €

2" ([wo, 21]) | y(20) = Yo, y(x1) = y1} which minimizes the functional
I(y) —27TJ yv/ 1+ y?(x)dx .

4.1.5 Newton’s Problem

The Newton problem is to find a curve C' connecting (xg,yo) and (x1,y;), where zo < z1,
such that its surface of revolution has the least resistance from the air when it moves along
z-axis with speed v (or velocity (v,0,0)).

Let u be the normal component of the velocity (given some surface of revolution) (thus

d /
u= Yy = L) Suppose that for each surface element dS (at point (z,v, 2)), the

ds /1+y/2

resistance force is [¢(u)dS]N for some function ¢, where N is the unit normal of the surface
with negative first component (which means the resistance force points to the left). If the
surface of revolution is given by the curve y = y(x), then with ds denoting the infinitesimal

arc-length, for each slice of the surface the total force acting on this slice is 2ryp(u)ds(N-eq)

. d .
(the vertical component cancels out); thus by the fact that d—y = (N-ey), the total resistance
S

force (in magnitude) is

Ity) = 2r |

zo

Tl Z1 /

d /
yg@(u)dsd—z = 27TJ Yy @(L)das

o /1+y/2

Therefore, the Newton problem can be formulated as “finding a function y € A = {y €

P ([xo, 11]) !y(:co) = Yo, y(x1) = yl} which minimizes 1(y)".

Newton’s model: ¢(u) = u®.

4.1.6 Brachistochrone Problem

A brachistochrone curve, meaning “shortest time” or curve of fastest descent, is the curve
that would carry an idealized point-like body, starting at rest and moving along the curve,
without friction, under constant gravity, to a given end point in the shortest time. For given
two point (0,0) and (a,b), where b < 0, what is the brachistochrone curve connecting (0, 0)
and (a,b)?

Given a curve parameterized by {(f(y),y) |y € [b, 0]} for some continuously differentiable

function f, the total time required to travel from (0,0) to (a,b) is given by

- [ ST,



Therefore, the brachistochrone problem can be formulated as finding f € A = {h €
€1([0,0]) ‘ h(0) = 0, h(b) = a} such that T(f) is minimized. In other words, the minimizer

h satisfies that
inf f - L+ Fly

feA —Qg

4.2 Simplest Problem in Calculus of Variations

Let [a,b] € R, L : [a,b] x R x R — R be continuous. We consider the problem of minimizing

the functional

I(y) = f Liz,y(z),y'(z)) da

for y € €' ([a,b]) or 2'([a,b]), and y satisfies the boundary condition y(a) = Ag, y(b) = By,
where €*([a,b]) denotes the space of continuously differentiable functions on [a,b], and
21 ([a, b]) denotes the space of continuous, piecewise continuously differentiable functions on
[a,b]. In other words, with A denoting either the set {y € ¢*([a,b]) |y(a) = Ao, y(b) = Bo}

or {y € 2'([a,b])|y(a) = A9, y(b) = Bo}, we consider the minimization problem

b
inff L(z,y(x),y'(z)) dz . (4.2)

yeA J,

The function L is called the Lagrangian.
In the following discussion, we write L = L(z,y,p) and let arg Ijlin I(z) denote the min-
zE
imizer, if exists, of the minimization problem IIlijl I(z). In other word, if y = arg I}llill I(2),
ZE ze

then y € A and
I(y) < I(z) Vze A.

Remark 4.2. Let

X ={ye @ ([a,8])|y(a) = 40, y(b) = Bo}
Y ={ye 2'(a,0])|y(a) = 4o, y(b) = Bo} .

Then arzgeglin I(z), if exists, equals argerjljlin I(z). To see this, we first note that I;él)l{l I(z) =
IZI'IEIJI)I I(z); thus for arg min I(z) # argeglin I(z) to hold, we must have y € Y\X such that
I(y) < IZI‘lEIK’? I(z). By smooth ¥ at corners, we obtain § € X such that I(y) < rzrél)l(q I(z2), a
contradiction.

However, it is possible that there are only minimizers in 2'([a,b]). See Example 4.15

for the detail.

4.2.1 First Variation of 1

Let A= {y € 2'([a,0])|y(a) = Ao, y(b) = Bo} and N = {n € €"([a,b]) |n(a) = n(b) = 0},
called the admissible set and the test function space, respectively. For y € A, ne N



and € € R, let J(e) = I(y + en) and consider the following quotient

J(e)—J(0) 1 Jb

€

= (L(z,y(x) + en(x),y'(z) + en'(2)) — Lz, y(x),y'(v))] do

a

Assume that L, and L, are continuous, then

iy 2000 _ [

e—0 €

[Ly(@, y(@),y'(2))n(z) + Ly(z, y(2), y'(2))n’ (z)] da .

. /

This limit, denoted by §1(y;n) or g—j(y), is called the first variation of I at y along 7.
n
Theorem 4.3. Ify = arg rjnn 1(2) is a minimizer of I, then 61(y;n) =0 for allne N.
zE

Definition 4.4. The integral equation 61(y;n) = 0 for all n € A is called the weak form

of the Fuler-Lagrange equation (associated with the minimization problem (4.2)).

e Basic Lemmas

Lemma 4.5. If y € €([a,b]) and be(x)n(x) dx =0 for allm € €([a,b]), then y = 0.

b
Lemma 4.6. If y € €([a,b]) and J y(x)n'(x)dx = 0 for all n € N, then y = ¢ for some

constant c.

x b
Proof. Let n(x) = j (y(t)—c) dt, where the constant c is chosen so that J (y(t)—c)dt = 0.

Then n € N and ’

a

b

b b
J ‘y(x) — 0‘2 dr = f (y(x) — c)n/(x) do = —cf n'(z)de = c(n(a) — n(b)) =0.

a

Therefore, y(z) = ¢ for all x € [a, b]. o

Lemma 4.7. If y,z € €([a,b]) satisfy

J ly(z)n(z) + z(z)n'(z)] dz =0 VneN, (4.3)

a

then z € €*([a,b]) and 2'(x) = y(z) for all x € [a,b].

Proof. Let z(x) = j y(t) dt. Integration-by-parts provides that

a

thus (4.3) implies that

b
f [2(z) — z1(x)]n'(z) dz = 0 VneN.

a

By Lemma 4.6, z(x) — z1(x) = C for some constant C. Therefore, z(z) = C + f y(t)dt
which implies that z € €'([a,b]) and z'(x) = y(z). " D



Lemma 4.8. Suppose that y, z € € ([a,b]) and z is not a constant function. If

b b
f y(x)n'(x)dx =0 VneN andn satisfies J z(z)n'(z)de =0,

a a

then there are constants \, i € R such that y(x) = Az(x) + p.

Proof. Let n(z) = J (y(t) — Az(t) — p) dt, where X, p are chosen so that n(b) = 0 and

a

b
J z(x)n'(x) dz = 0; that is,

)\Lbz(:c) dl‘—l—/LLbd:L’ = Lby(:c)d:c,
Aff(x) dxwfz(x) dr — Lby(x)z(x) iz

a a

Since z is not a constant, the Cauchy-Schwarz inequality implies that the system above has
b

a unique solution (A, u). Since n € N and satisfies f z(x)n'(x) dz = 0, we have

a

b
(v(a) = Nefe) = ' () do = . [ ') do = 03

a

Lb ly(x) — Az(x) — pl* do = fb

a

thus y(z) = Az(z) + p for all z € [a, b]. o

4.2.2 The Euler-Lagrange Equation

Recall that the weak form of the Euler-Lagrange equation associated with the minimization
problem (4.2) is 1 (y;n) = 0 for all n € .

Theorem 4.9. Suppose that L, L,, L, are continuous. If y € A is a minimizer of the

minimization problem (4.2), then

d ~ ~ ~ ~
T Lo(@,9(2), 5 () = Ly(2,§(x), ' (x)) (4.4)
for point x at which §’ is continuous.

Proof. Apply Theorem 4.3 and Lemma 4.7 to each interval on which 7 is of class €. =

Definition 4.10. Equation (4.4) is called (the strong form of) the Euler-Lagrange equa-

tion (associated with the minimization problem (4.2)).
Remark 4.11.

1. Theorem 4.9 is essentially due to Du Bois-Reymond, so (4.4) is also called the Du

Bois-Reymond equation.



2. If g € €*([a,b]) and Ly, Ly, Ly, are continuous, then y satisfies the following second
order ODE

Lyp(, (), §"(2))y" (x)
= Ly(2,9(2),§'(z)) — Lpe(2,§(2),§'(2)) — Lpy(2,9(x),§"(2))7" (x) .
This is the equation that Euler originally derived/obtained.

Example 4.12. Now we consider the brachistochrone problem. We rewritten the minimiza-

inf—J - WL Lty

heA v—2gx

tion problem as

-~ 1 - - W1+ p?
where A = {y € 2'([0,b])|y(0) = 0,y(b) = a}. Therefore, L(z,y,p) = Na=TT which

implies that the Euler-Lagrange equation for the brachistochrone problem is

d y’
dx \/=2gx~/1 + y" N

Therefore, if § € A is a minimizer, then in each interval where ¢’ is continuous,

~!

Y

V2921497

for some constant C. The equation above shows that §”? = —2C?gx(1+7"?) which, together

with the fact that ¥’ must be non-positive, implies that

7'(x) = — _—2C%gx
YR = 1+2C%gx

As a consequence, if § € €([0,]),

—2C%gt
1+ 2C2gt

and the constant C' is determined by the condition 7(b) =

Example 4.13. The Euler-Lagrange equation for the minimal surface of revolution problem
is
d yy'

% /1+y/2 -

and the Euler-Lagrange equation for Newton’s problem (with ¢(u) = u?) is

dyy”(y”"+3) _ y"®
dr (1+y/2)2 _ 1_|_y/2'

1+y7,

Theorem 4.14. Suppose that y € 2'([a,b]) satisfies the Fuler-Lagrange equation (4.4), and
€ (a,b). If Ly, Ly, are continuous at (x,y(x),y'(x)), Lpp(x,y(x),y'(z)) # 0, and y’ is

continuous at x, then y"(x) exists.



Proof. Since y € A is a minimizer of the minimization problem (4.2) and g’ is continuous
at x, by Theorem 4.9 we find that

050, 0) = Lyl 50), 50

Note that
L Ly, 5(a). 5'(2)) = lim T EIEE DI H ) = By 512, T12)
— iy [Lo0:0)T @+ ) Ll 1), 5 )
L b+ o e+ 9.7+ 9) - LI T @+ )

By the mean value theorem,

Ly(z+e€,y(x+¢€),y (x+¢€) — Ly(z,y(x),y (x + €))
=L(z+e€gx+e€),y (x+¢€) — Ly(z,y(x +€),7 (x +¢€))
+ Lp(2,§(z + €), 7 (z + €)) — Lp(z,5(2), §'(z + ¢€))
= Ly (x4 €1, 5(x +€),5 (x +€))e
+ Lpy(@,§(x) + 025z + €) — §(2)), §'(z + €))(U(z + €) — Y(2))

for some 0 = 6;(¢, x) and 0y = O,(¢, x) satisfying |6;|, |#2] < 1. Therefore, by the continuity
of Ly, and Ly, at (z,y(z),y’(z)) and §’ at z,

lim Ly(z+ey(x+e),y (x+e¢€)— Ly(z,y(z),y (x +¢))
e—0 €

= pr(x, y(), gl(x)) + pr(x,ﬁ(x),ﬁ'(x))ﬁ'(x) )

thus

o L@ 7(2). 5@ + ) = Ly(a,§(@). 7' (@) -
e—0 € 4.5
= Ly(2,y(2), 5" () = Lpa(2,5(2), y'(2)) = Ly (2, 5(), 5" (x))y" ()

exists.

Suppose the contrary that y”(z) does not exist. Then
#{0<le|<0|7(z+e¢)#7(x)} =0  VI>0 (4.6)

for otherwise there exists d > 0 such that #{0 < |e| < 0|7’ (z+¢€) # §'(z)} < 0; thus there
exists € > 0 such that §’(z + €) = y’(z) for all |¢| < €* which then leads to a contradiction

that . .
ICED R
€e— €

=0.

Let {¢;}72, be sequence converging to 0 such that

~/ N\ ~/ ~/ D ~/
liminfy(x+63) y'(x) <limsupy<x+ej) y(x)
J—0 €

J j—00 €j




Using (4.6), {j € N|7'(z + ¢;) # §'(z)} = {je}7,; thus by the definition of L,, and the

continuity of " at x,

o 17+ ) = Ly )@ o
B e ra) 7w - bl )

The condition L,,(x,y(x),y’(x)) # 0 further implies that

. 7o+ )~ ') ! |
e Lyl 5(@), (0 + €)= Lyl 0@), 7))~ Lygl, (). 5'(2))

We then conclude from (4.5) that

o T+ €5) = 7'(@)
{—0 €5

= jim [L (2, 9(2), 7' (x +€5,)) — Lp(x

Ly(z,y(x), §'(x)) = Lpa (2, § (),
Lpp(,y(x),y

If #{j € N‘g’j’(:p +€j) = Q/(m)} = o0, then with {j,}2, = {j € N‘g’j’(:p +€j) = @/(m)},
(4.5) shows that

Ly(x,9(x), §'(x)) = Lpa(z, §(2),§(x)) = Lpy(2, §(2), §'(2))7"(x)
),y

_ iy Lo(@:0(), '@ + ) = Ly(, §(2),§'(2))
i Dol 0@). 5@+ ) = Ly, §@), ') _

thus (4.8) yields that
o 4 6) — @)
Jj—0 €

=0,

a contradiction to (4.7). Therefore, #{j € N|g(z +¢;) = §(x)} < 0; however, this would

imply that
Pete) =@ L5, 7)) — Ly, ). 5(0)) ~ Ly 5(2), (@) (@)
J—o €j Lpp(z,y(x),y'(x)) 7

still a contradiction to (4.7). o

Example 4.15. Let A = {y € 2'([0,1])|y(0) = y(1) = 0}. Consider the minimization

problem
1
inf | (y/(x)? —1)"da;
;gAL (y'(x)* =1)" dx;
that is, we assume L(x,y,p) = (p* —1)?. The Euler-Lagrange equation associated with this

minimization problem is

d d 9 9
aa 12 =0
&z dp ey V)




1
which, together with the fact that L,,(z,y, p) = 12p*—4, implies that if p* 3 the minimizer
Y satisfies
2@\/2@\// + (@\/2 o 1)@\// _ O ]

~ ~ . . ~ . . ~ 1
Therefore, 3" (37" — 1) = 0 on points at which ¢’ is continuous and gy # 3 Therefore,

~ . ~ 1 . . . ~ . . . . . . .
" = 0if 9 # 3 which implies that 3’ is piecewise constant. The minimizer is then

saw-tooth like function with slope 41, and there are only Z'-minimizers.

Remark 4.16. Suppose L,, # 0 and y = argmin I(z). If §’ is continuous in a neighborhood
pp zeA

of x, then 9" exists in a neighborhood of x and is continuous there.

Remark 4.17 (Remark on the extensions of the simplest problem of Calculus of variations).

1. Higher derivatives: The Lagrangian might involves higher order derivatives of y.

For example, we can consider the minimization problem

inf j Lz, y(a).y' (), 4" (2)) de.

ye

where A = {y € 2%([a,b])|y(a) = Ao, y(b) = Bo,y'(a) = Ay, y'(b = Bl} We note
that the correspondlng test function space is N = {y e 2%(la ‘y = y(b) =
y'(a) = y'(b) = 0}.

If ¥ is a minimizer, then J(e) = I(y + en) attains its minimum at ¢ = 0 for
all n € M. This implies J'(0) = 0 for all n € N, and this condition gives the weak

form of the Euler-Lagrange equation associated with this minimization problem: write
L= L(z,y,p,q),

b
f [Ly(w,??(:v),@/(w),??”(ﬂf))n(w) + Ly(z,§(x), 5 (), 5" (x))n"(x)

a

+ Ly(w, §(2), §'(@), 7" (@) ()] dw = 0 VneN.
2. Free ends: This is to consider the minimization problem

inf )Ja L(z,y(z),y'(z)) dx.

yeZ ([a,b]

In this case, the test function space is then N = %*([a,b]). The same argument

implies that
Ly (b,5(b), 5" (6))n(b) — Ly(a, §(a), 5" (a))n(a) =0 Vne €' ([a,b]).
Therefore,

(a) The Euler-Lagrange/Du Bois-Reymond equation holds.
(b) L,(b,4y(b),y’'(b)) = Ly(a,y(a),y’(a)) = 0 - this is called the natural boundary

condition.



3. Several dependent variables: Let
A={y=(y1, - ,m0) : [a,0] > R*|y; € Z'([a,b]) for 1 < j <n,y(a) = Ao, y(b) = Bo}
or (when considering minimization problems with free ends)
A={y= (1, ,w):[a,0] > R"|y; € Z'([a,b]) for 1 <j <n}=2'([a,B];R"),

and L : [a,b] x R* x R* — R. Consider the minimization problem

b
inf J L(z,y(z),y'(x)) dx.

yeAd ),

Write L = L(z,y1, - ,Yn,P1," - ,Pn)- Then the Du Bois-Reymond equation is
L y(@), /(@) = Ly (o, y(@), o/() for i=12-m. (49)
When considering free ends problem, natural boundary conditions
Ly, (b, 9(6),9'(0) = Ly (a,9(a),9'(a)) =0 for i=12--,n (4.10)
have to be imposed for the minimizer y.

4. Several independent variables: Let 2 € R" be bounded open set, and L : € x
R x R"™ — R. Consider the minimization problem

int | Lw.u(o). Dy(e) o,

where A could be

(a) A= {ye 2" )|y = fondQ} (with corresponding N' = {n € €*(Q)|n =
0 on 89}) when considering the fixed-end problem, or
(b) A = 2YQ) (with corresponding N' = €()) when considering the free-end

problem.

Define J(e) = (g + en), where § € A is a possible minimizer, n € N" and « € R. The
weak form of the Euler-Lagrange equation is J'(0) = 0.

5. Non-affine admissible set: We note that in Dido’s problem the admissible set A
is not an affine space (a translation of a vector space). In a minimization problem,
the admissible set A in general is not an affine space so there is no obvious test
function spaces N to work on. See Example 4.19 for deriving the weak form of the

Euler-Lagrange equation for minimizers.

Example 4.18 (The minimal surface). Suppose that Q € R? is a bounded set with bound-
ary parameterized by (z(t),y(t)) for t € I, and C' = R? is a closed curve parameterized by
(x(t),y(t), f(x(t),y(t))) for some given function f. We want to find a surface having C' as



its boundary with minimal surface area. Then the goal is to find a function u with the

property that u = f on 0€) that minimizes the functional

Alw) = L V14| Vw|2dA.

Let ¢ € €(Q2), and define

S A ) = lim Alu+ ep) — A(u) Vu-Vo

= dx .
t—0 € Q q/1+|Vu|2

If v minimize A, then §A(u; ) = 0 for all p € €1(Q) satisfying ¢ = 0 on 0f2. Assuming
that u € €2(12), by the divergence theorem (Theorem 3.31) we find that u satisfies

diV(V%) =0,

or expanding the bracket using the Leibnitz rule, we obtain the minimal surface equation
(1+ uf/)um — 2ty Uy + (14 w2 )1y, =0 V(z,y) e . (4.11)

Example 4.19 (Isoperimetric Inequality - revisit). We rephrase Dido’s problem as finding

a simply closed curve C' enclosing a fixed number A of area with shortest perimeter. Let
1

A= {r(t) = @(0).9(0) € 70,1 [ r(0) = 7(1)., |

(xy — yi)dt = QA}
0

1
and I(r) = inj f |7(t)| dt. We would like to study the minimization problem infl I(r).
TE 0 TE

The difficulty of this particular formulation is that A is not an affine space so there
is “no” corresponding test functions space to compute the first variation as before. To see
how we derive the Euler-Lagrange equation for this minimization problem for a minimizer
r = (Z,7), we introduce a family of curves r(t;e) = (z(t;€),y(t;¢)) € A, where € € R is a

parameter that will be passed to the limit, such that

L. 7(t;0) = 7(t); 2. 7(0;¢) = r(1;¢€); 3. 7 is also differentiable in e.
Denote d7(t) = (dz(t), dy(t)) = % r(t;€). Since 7 € A,
e=0

d

de

ezof [2(t; €)y(t;€) — y(t; €)i(t;e)] dt =0

0

which implies that dr satisfies

J [(62)5 + 3(Sy) — (59)3 — §(6x)] dt = 0. (4.12)

0

For each possible minimizer 7, the relation above induces a linear vector space

N = {5r = (5z,0y) € €'([0, 1)) ( Ll [#(8y) — §(67)] dt = o} .



Now we look for a minimizer 7 € €2([0,1]). We note that Remark 4.2 implies that if we
are able to find a minimizer in ¢*([0, 1]) (thus a ¢'-minimizer), it must also be a minimizer
in 2'([0,1]). Since 7 € €*([0,1]) is a minimizer, the function J(e) = I(r(¢;¢)) attains its

minimum at € = 0. This yields that J’(0) = 0 or more precisely,

f?%»@ﬂ%pﬁzo

o @)

where we note that dr € 44. In other words, T satisfies

f PO sy dt =0 Wore S, (4.13)
o [Pt

and Lemma 4.8 implies that there exists A, Ag, 11, pt2 € R such that

= (= MB() + g, AaB(8) + pro) -

Since 7 = (Z,79) € €*(]0, 1]), we differentiate the equation above and obtain that

m(t) Y ~ ~
<|/’l'\‘,(t)|) = (_)‘ly (t),)\2$ <t>)

Therefore, taking the inner product of the equation above with the unit tangent vector

we find that

0= < (1) )( ?’(t)|>’ = (4@’@),&%’(@).( (1) ) = o= ) 2Ty o

@)/ NP () |7'(t)]

)

!/

‘ 3

/|7

<

which implies that Ay = Aq; thus
(1)
7(1)]

Note that A # 0 for otherwise the unit tangent vector is constant which implies that 7 is a

= A=0(t),2(t)) + (u1, o) -

parametrization of a straight line. Therefore, with 7 = (%(t),§(t)) denoting the vector

we have 0
r(t) ~ ~

Finally, taking the inner product of the equation above with the (position) vector 7, we

conclude that
d i~

—Ir
dt
Therefore, the closed curve having fixed length and enclosing the largest area must be a

0 =0.

circle.
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