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Chapter 0

Introduction

What is mathematical modeling (or simply modeling)? Modeling is a process that uses
math to represent, analyze, make predictions, or otherwise provide insight into
real-world phenomena.

1. Define the problem statement:

(a) A concise statement of the problem will tell you what your model will measure
or predict.

(b) Focus and define subjective words (so that they are quantifiable)

(c) Explore with research and brainstorming.

(d) Brainstorm like you have access to any and all data.

(e) Assign a team member to record every idea.

(f) Visual diagrams can be a powerful tool to help structure.

(g) Keep an open mind.

2. Making assumptions: After defining the problem statement, you probably will find
that your problem is still too complicated. Sharpen your focus by making assumptions.
These basic conjectures allow you to reduce the number of factors affecting your model
helping you decide what is important.

(a) Assumptions come from brainstorming.

(b) Preliminary research will help you make assumptions.

(c) In the absence of relevant data, it is reasonable to make (and justify) your as-
sumptions.

(d) Assumptions develop as you move through the modeling process.

3. Defining variables: The variables you need to develop your solution come from the
perspective of the problem statement. Dependent variables are often called outputs
that represent the information you seek. Independent variables, also known as inputs,
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represent quantities you know the value of but may change. Fixed model parameters
represent constants that remain the same.

(a) Your problem statement will define the output.

(b) Initial brainstorming should give clues to independent, dependent, and fixed
model parameters.

(c) Keep track of the units of measurement you are using (because they can reveal
relationship between variables - dimensional analysis)

(d) You may need to do additional research or make new assumptions to find values
of parameters.

(e) Sub models or multiple models may be needed to reveal certain model input.

4. Getting a solution: use any math tools and softwares to find a answer to the model
proposed in the previous steps.

5. Analysis: When one gets a solution of a proposed model, one needs to check the
following:

(a) Is the magnitude of the answer reasonable?

(b) Does the model behave as expected?

(c) Can one validate the model?

You may also determine if the model is acceptable by doing the following:

(a) List the model’s strengths and weaknesses/limitations.

(b) Determine your model’s sensitivity to parameters and assumptions.

(c) Consider potential improvements.



Chapter 1

Dimensional Analysis（量綱/因次分析）

One of the basic techniques useful in the early stage of modeling problems is the analysis
of the relevant quantities and how they relate to each other in a dimensional way. The
relationship among the variables must have dimensional homogeneity which simply
says that variables with different dimensions cannot be identical (or in short, apples cannot
equal oranges). These observations form the basis of the subject known as dimensional
analysis.
物理量的量綱可以用來分析或檢核幾個物理量之間的關係，這方法稱為量綱分析

（dimensional analysis）。通常，一個物理量的量綱是由像質量、長度、時間、電荷量、溫
度一類的基礎物理量綱結合而成。例如，速度的量綱為長度每單位時間，而計量單位為

公尺每秒、英哩每小時或其它單位。量綱分析所根據的重要原理是，物理定律必需跟其

計量物理量的單位無關。任何有意義的方程式，其左手邊與右手邊的量綱必需相同。檢

查有否遵循這規則是做量綱分析最基本的步驟。

Remark 1.1. We distinguish the word unit（單位）from the word dimension（量綱/因
次）. By units we mean specific physical units like seconds, hours, days, and years; all of
these units have dimensions of time. Similarly, grams, kilograms, pounds, and so on are
units of the dimension mass.
注意到術語「量綱」比尺度「單位」更抽象：質量是一種量綱，而公斤是量綱為質量的

一種尺度單位。對於每一種量綱，不同的標準制會規定不同的單位。物理量速度的量綱

是長度／時間（
L

T
或 LT´1），物理量作用力的量綱是質量 ˆ 長度／ (時間的平方）（ML

T 2

or MLT´2）。原則而言，其它種物理量的量綱也可以定義為基礎量綱，可以替換上述幾

個量綱。例如，動量、能量或電流都可以選為基礎量綱。

有些物理學者不認為溫度是基礎量綱，因為溫度表達為粒子的能量每自由度，這可以

以能量（或質量、長度、時間）來表達。有些物理學者不認為電荷量是基礎量綱；在厘

米-克-秒（cgs）制內，電荷量可以以質量、長度、時間共同結合在一起來表達。另外，還
有一些物理學者懷疑，大自然存在著具有不相容基礎量綱的物理量。

For a given physical quantity q, we use [q] to denote the dimension of q, and use L, M ,
T to denote the dimension of length, mass, and time, respectively. A quantity which does
not change after changing unit of every fundamental dimension is called dimensionless.
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1.1 Dimensional Methods
The cornerstone result in dimensional analysis is known as the Pi theorem which states
that if there is a physical law which provides a relation among several dimensioned physical
quantities, then there is an equivalent law that can be expressed as a relation among certain
dimensionless quantities.

Question: What does it mean by a relation among several dimensioned physical quantities?

Example 1.2. The air resistance F a biker encounters appears to be related to the speed
v and the cross-sectional area A, as well as the air density ρ. Therefore,

F = ϕ(ρ,A, v)

or equivalently,
f(F, ρ, A, v) = F ´ ϕ(ρ,A, v) = 0 .

Example 1.3. Suppose that we want to compute the yield of the first atomic explosion
after viewing photographs of the spread of the fireball. In such an explosion a large amount
of energy E is released in a short time in a region small enough to be considered a point.
From the center of the explosion a strong shock wave spreads outwards; the pressure behind
the shock is on the order of hundreds of thousands of atmospheres, far greater than the
ambient air pressure whose magnitude can be accordingly neglected in the early stages of
the explosion. It is plausible that there is a relation between the radius of the blast wave
front r, time t, the initial air density ρ, and the energy released E. Hence, we assume there
is a physical law

f(t, r, ρ, E) = 0

which provides a relationship among these quantities.

Suppose that m quantities q1, q2, ¨ ¨ ¨ , qm are dimensioned quantities that are expressed
in terms of certain selected fundamental dimensions L1, L2, ¨ ¨ ¨ , Ln, where n ă m. The
dimensions of qi, denoted by [qi], can be written in terms of the fundamental dimensions as

[qi] = La1i1 La2i2 ¨ ¨ ¨Lanin

for some exponents a1i, a2i, ¨ ¨ ¨ , ani. If [qi] = 1, then qi is said to be dimensionless. The
n ˆ m matrix 

a11 ¨ ¨ ¨ a1m
a21 ¨ ¨ ¨ a2m
... ...
an1 ¨ ¨ ¨ anm

 (1.1)

containing the exponents is called the dimension matrix. The entries in the i-th column
give the exponents for qi in terms of the powers of L1, ¨ ¨ ¨ , Ln.



Any fundamental dimension Li has the property that its units can be changed upon
multiplication by the appropriate conversion factor λi ą 0 to obtain sLi in a new system of
units. We write sLi = λiLi. The units of derived quantities q can be changed in a similar
fashion. If

[q] = Lb11 L
b2
2 ¨ ¨ ¨Lbnn , (1.2)

then
sq = λb11 λ

b2
2 ¨ ¨ ¨λbnn q (1.3)

gives q in the new system of units.

Definition 1.4. Let q1, q2, ¨ ¨ ¨ , qm be dimensioned quantities. The physical law

f(q1, q2, ¨ ¨ ¨ , qm) = 0 (1.4)

is said to be unit free if for all choices of real numbers λ1, ¨ ¨ ¨ , λn with λi ą 0 for all
1 ď i ď n, we have f(q1, ¨ ¨ ¨ , qm) = 0 if and only if f(sq1, ¨ ¨ ¨ , sqm) = 0, where qi and sqi are
related by (1.3) if qi obeys (1.2).

Theorem 1.5 (Pi Theorem). Let

f(q1, q2, ¨ ¨ ¨ , qm) = 0 (1.5)

be a unit free physical law that relates the dimensioned quantities q1, q2, ¨ ¨ ¨ , qm. Let L1, L2,
¨ ¨ ¨ , Ln, where n ă m, be fundamental dimensions with

[qi] = La1i1 La2i2 ¨ ¨ ¨Lanin , i = 1, ¨ ¨ ¨ ,m ,

and let r = rank(D), where D is the dimension matrix given by (1.1). Then there exist (m´r)

independent dimensionless quantities π1, π2, ¨ ¨ ¨ , πm´r that can be formed from q1, ¨ ¨ ¨ , qm and
the physical law (1.5) is equivalent to an equation

F (π1, ¨ ¨ ¨ , πm´r) = 0

expressed only in terms of the dimensionless quantities.

Proof. Let D = [aij]nˆm be the dimension matrix and π = qα1
1 qα2

2 ¨ ¨ ¨ qαmm be a dimensionless
quantities. Then with α denoting the vector (α1, ¨ ¨ ¨ , αm)

T, we have

Dα = 0 ,

where 0 denotes the zero vector in Rn. Since rank(D) = r, without loss of generality we
can assume that the first r column of D is linearly independent; thus α1, ¨ ¨ ¨ , αr can be
expressed in terms of (αr+1, αr+2, ¨ ¨ ¨ , αm). In fact,

D(:, 1 : r)α(1 : r) = ´D(:, r + 1 : m)α(r + 1 : m) ,



where D(:, i : j) denotes the matrix formed by the i-th to j-th columns of D, and α(i : j)

denotes the (column) vector formed by the i-th to j-th components of α. Assume that the
vector α(1 : r) is given by

α1

α2
...
αr

 =


b11 b12 ¨ ¨ ¨ b1(m´r)

b21 b22 ¨ ¨ ¨ b2(m´r)
... ...
br1 br2 ¨ ¨ ¨ br(m´r)



αr+1

αr+2
...
αm

 .

Then πj, 1 ď j ď m ´ r, defined by (with αr+ℓ = δℓj for 1 ď ℓ ď m ´ r)

πj = q
b1j
1 q

b2j
2 ¨ ¨ ¨ qbrjr qr+j

are dimensionless quantities (so change of units will not change the value of πj). Define

G(q1, ¨ ¨ ¨ , qr, π1, ¨ ¨ ¨ , πm´r)

= f(q1, q2, ¨ ¨ ¨ , qr, π1q
´b11
1 ¨ ¨ ¨ q´br1

r , π2q
´b12
1 ¨ ¨ ¨ q´br2

r , ¨ ¨ ¨ , πm´rq
´b1(m´r)

1 ¨ ¨ ¨ q
´br(m´r)
r ) .

Then G(q1, ¨ ¨ ¨ , qr, π1, ¨ ¨ ¨ , πm´r) = 0 if and only if f(q1, ¨ ¨ ¨ , qm) = 0. Moreover, since
f(q1, q2, ¨ ¨ ¨ , qm) = 0 is unit free, G(q1, ¨ ¨ ¨ , qr, π1, ¨ ¨ ¨ , πm´r) = 0 is unit free.

Now, since G(q1, ¨ ¨ ¨ , qr, π1, ¨ ¨ ¨ , πm´r) = 0 is unit free, for any choice of conversion
factors λ1, ¨ ¨ ¨ , λn ą 0 and

sqj = λ
a1j
1 λ

a2j
2 ¨ ¨ ¨λanjn qj , 1 ď j ď r ,

we must have G(sq1, ¨ ¨ ¨ , sqr, π1, ¨ ¨ ¨ , πm´r) = 0. Since D(:, 1 : r) consists of r linearly inde-
pendent column vectors and n ě r, there exist λ1, ¨ ¨ ¨ , λn (might not be unique if n ą r)
such that 

a11 a21 ¨ ¨ ¨ an1
a12 a22 ¨ ¨ ¨ an2
... ...
a1r a2r ¨ ¨ ¨ anr




logλ1
logλ2

...
logλn

 =


´ log q1
´ log q2

...
´ log qr

 (1.6)

Choosing λ1, ¨ ¨ ¨ , λn satisfying (1.6). Then in the new system of units sqj = 1; thus in the
new system of units,

F (π1, ¨ ¨ ¨ , πm´r) ” G(1, ¨ ¨ ¨ , 1, π1, ¨ ¨ ¨ , πm´r) = 0 . ˝

Example 1.6 (Example 1.2 - revisit). Since

[F ] =MLT´2 , [ρ] =ML´3 , [A] = L2 , v = LT´1 ,

the dimension matrix (with the order of dimension T , L, M) is´2 0 0 ´1
1 ´3 2 1
1 1 0 0

 .



The rank of the dimension matrix above is 3; thus there is only one dimensionless quantity
that can be formed from F, ρ, A, v. Suppose that π = Fα1ρα2Aα3vα4 is a dimensionless
quantity. Then ´2 0 0 ´1

1 ´3 2 1
1 1 0 0



α1

α2

α3

α4

 =

00
0


which gives a dimensionless quantity π = Fρ´1A´1v´2. Therefore, an equivalent physical
law is given by g(π) = 0 which shows that π = k (or equivalently, F = kρAv2) for some
(dimensionless) constant k.

Example 1.7 (Example 1.3 - revisit). Since

[t] = T , [r] = L , [ρ] =ML´3 , E =ML2T´2 ,

the dimension matrix (with the order of dimension T , L, M) is1 0 0 ´2
0 1 ´3 2
0 0 1 1

 .

The rank of the dimension matrix above is clearly 3; thus there is only one dimensionless
quantity that can be formed from r, r, ρ, E. Suppose that π = tα1rα2ρα3Eα4 is a dimension-
less quantity. Then 1 0 0 ´2

0 1 ´3 2
0 0 1 1



α1

α2

α3

α4

 =

00
0


which gives a dimensionless quantity π = t2r´5ρ´1E. Therefore, an equivalent physical
law is given by F (π) = 0 which shows that π = k (or equivalently, t2E = kρr5) for some
(dimensionless) constant k.

Example 1.8. At time t = 0 an amount of heat energy e, concentrated at a point in space,
is allowed to diffuse outward into a region with temperature zero. If r denotes the radial
distance from the source and t is time, the problem is to determine the temperature u as a
function of r and t.

Clearly the temperature u depends on t, r and e. Moreover, it is “reasonable” that the
“thermal diffusivity” k with dimension length-squared per time and the “heat capacity” c
of the region, with dimension energy per degree per volume, play a role. Therefore, the
physical law is given by

f(t, r, u, e, k, c) = 0 .

This physical law has 6 dimensioned quantities

[t] = T, [r] = L, [u] = Θ, [e] = E, [k] = L2T´1, [c] = EΘ´1L´3 .



The dimension matrix (with the order of dimension T, L,Θ, E) is
1 0 0 0 ´1 0
0 1 0 0 2 ´3
0 0 1 0 0 ´1
0 0 0 1 0 1

 .

It is easy to see that the dimension matrix has rank 4; thus by the Pi theorem there
are 2 dimensionless quantities that can be formed from t, r, u, e, c, k. To see how we form
dimensionless quantities, we assume that the combination[

tα1rα2uα3eα4kα5cα6
]
= 1 .

In other words, 
1 0 0 0 ´1 0
0 1 0 0 2 ´3
0 0 1 0 0 ´1
0 0 0 1 0 1



α1

α2

α3

α4

α5

α6

 =


0
0
0
0
0
0


which shows that α1 = α5, α3 = ´α4 = α6, and α2 = ´2α5 + 3α6. Therefore, two
dimensionless quantities can be formed

(
using (α5, α6) =

(
´

1

2
, 0
)
or

(3
2
, 1
))

as

π1 =
r

?
kt

and π2 =
uc

e
(kt)

3
2

and an equivalent physical law is given by F (π1, π2) = 0 which “implies” that π2 = g(π1)

for some function g. Therefore, the temperature u can be expressed by

u =
e

c(kt)
3
2

g
( r

?
kt

)
.

Example 1.9. Suppose that at time t = 0 an object of mass m is given a vertical upward
velocity V from the surface of a spherical planet (with mass M and radius R). The height
h of the object is a function of t that obeys

m
d2h

dt2
= ´

GMm

(R + h)2
.

The gravitational acceleration g on the surface of the planet is given by g =
GM

R2
; thus

including the initial data,

d2h

dt2
= ´

R2g

(R + h)2
, h(0) = 0 , h 1(0) = V . (1.7)

The physical law of the system above can be written as

f(t, h, R, V, g) = 0 ,



where the five dimensioned quantities have dimension

[t] = T , [h] = L , [R] = L , [V ] = LT´1 and [g] = LT´2 ,

and the dimension matrix (with the order of dimension T , L) is given by[
1 0 0 ´1 ´2
0 1 1 1 1

]
.

If π = tα1hα2Rα3V α4gα5 is a dimensionless quantity, then

[
1 0 0 ´1 ´2
0 1 1 1 1

]
α1

α2

α3

α4

α5

 =

[
0
0

]

or equivalently, α1 = α4 + 2α5 and α2 = ´(α3 + α4 + α5). Since the rank of the dimen-
sion matrix is 2 there are three dimensionless quantities that can be formed: we choose
(α3, α4, α5) = (´1, 0, 0), (´1, 1, 0) and

(
´

1

2
, 1,´

1

2

)
to form

π1 =
h

R
, π2 =

tV

R
, π3 =

V
?
gR

.

Therefore, the Pi theorem “implies” that there exists a function F such that π1 = F (π2, π3)

or
h

R
= F

( tV
R
,
V

?
gR

)
.

Suppose that at t = tmax the object reaches its maximum height. Intuitively tmax should
depends on three dimensional quantities g,R, V . On the other hand, we have h 1(tmax) = 0;
thus

0 = h 1(tmax) = R
B

Bπ2

ˇ

ˇ

ˇ

t=tmax
F
( tV
R
,
V

?
gR

)
= V

BF

Bπ2

( tmaxV

R
,
V

?
gR

)
.

The above relation “implies” that tmaxV

R
is a function of V

?
gR

; thus

tmaxV

R
= G

( V
?
gR

)
.

1.2 Characteristic Scales and Scaling
The use of “characteristic scales” helps us reduce mathematical model into dimensionless
form.

Example 1.10. Let p = p(t) denote the population of an animal species located in a fixed
region at time t. The simplest model of population growth is the classic Malthus model
which states that the growth rate dp

dt
is proportional to the population p, or equivalently

dp

dt
= rp.



where r is the growth rate, given in dimensions of inverse-time. A more reasonable model,
called the logistics model, is given by

dp

dt
= rp

(
1 ´

p

K

)
,

where K ą 0 is called the carring capacity (with dimension of population). Let τ = rt, and
p

K
= P . Then τ and P are dimensionless variables that satisfy

dP

dτ
= P (1 ´ P ) .

The above ODE is a relation between two dimensionless quantities.
Suppose that an initial condition p(0) = p0 is imposed on this ODE. Then using P and

τ we have the following dimensionless model
dP

dτ
= P (1 ´ P ) , P (0) = ϵ , (1.8)

where ϵ = p0
K
. On the other hand, there is another way of rewriting

dp

dt
= rp

(
1 ´

p

K

)
, p(0) = p0

into dimensionless form. Let rP =
P

p0
and τ = rt. Then we have

d rP

dτ
= rP

(
1 ´ ϵ rP

)
, rP (0) = 1 . (1.9)

We note that if ϵ ! 1, we tend to let ϵ = 0 and find that (1.9) provides a more reasonable
approximation.

Example 1.11 (Example 1.9 - revisit). In this example we choose characteristic time scale
tc and length scale ℓc to recast the ODE (1.7)

d2h

dt2
= ´

R2g

(R + h)2
, h(0) = 0 , h 1(0) = V . (1.7)

We note that with dimensionless time t̄ = t/tc and dimensionless height h̄ = h/ℓc
(
so that

h̄(t̄) =
h(tct̄)

ℓc

)
, ODE (1.7) is equivalent to the dimensionless ODE

d2h̄

dt̄2
= ´

t2cg

ℓc

1

(1 +
ℓc
R
h̄)2

, h̄(0) = 0 , h̄ 1(0) =
tcV

ℓc
. (1.10)

Three dimensioned quantities in (1.7) are

[R] = L , [g] = LT´2 and [V ] = LT´1 .

Therefore, three relevant time scales are tc = R/V , tc =
a

R/g or tc = V /g, and two
relevant length scales are ℓc = R or ℓc = V 2/g.

Define a dimensionless quantity ϵ = V 2

gR
. Using these characteristic scales, we reach at

the following dimensionless problems:



1. Let tc = R/V and ℓc = R. Then (1.10) implies that

ϵ
d2h̄

dt̄2
= ´

1

(1 + h̄)2
, h̄(0) = 0 , h̄ 1(0) = 1 .

2. Let tc = R/V and ℓc = V 2/g. Then (1.10) implies that

ϵ2
d2h̄

dt̄2
= ´

1

(1 + ϵh̄)2
, h̄(0) = 0 , h̄ 1(0) =

1

ϵ
.

3. Let tc =
a

R/g and ℓc = R. Then (1.10) implies that

d2h̄

dt̄2
= ´

1

(1 + h̄)2
, h̄(0) = 0 , h̄ 1(0) =

?
ϵ .

4. Let tc =
a

R/g and ℓc = V 2/g. Then (1.10) implies that

d2h̄

dt̄2
= ´

1

ϵ

1

(1 + ϵh̄)2
, h̄(0) = 0 , h̄ 1(0) =

1
?
ϵ
.

5. Let tc = V /g and ℓc = R. Then (1.10) implies that

d2h̄

dt̄2
= ´ϵ

1

(1 + h̄)2
, h̄(0) = 0 , h̄ 1(0) = ϵ .

6. Let tc = V /g and ℓc = V 2/g. Then (1.10) implies that

d2h̄

dt̄2
= ´

1

(1 + ϵh̄)2
, h̄(0) = 0 , h̄ 1(0) = 1 .

Suppose that ϵ ! 1; that is, V 2 is much smaller than gR. In such a case, we are tempted
to delete the terms involving ϵ (or simply setting ϵ = 0) in the scaled problem. Then
only case 3, 5, 6 provide meaningful models; however, only case 6 can provide a reasonable
interpretation of the real phenomena. Therefore, one needs to be very careful about choosing
characteristic scales.
The reason why tc = V /g and ℓc = V 2/g is the correct characteristic scale when
ϵ ! 1?

When the gravity acceleration is always g
(
instead of GM

(R+ h)2

)
, the rocket takes V /g

time to reach its maximum height V
2

2g
; thus tc =

V

g
is a good choice of the characteristic

time scale and ℓc =
V 2

g
is a good choice of the characteristic length scale.

Example 1.12. The Navier-Stokes equation (which we will derive much later) is used to
described the dynamics of fluids such as the air or liquids. Consider incompressible fluids
(which means the density of the fluid under consideration is a constant). Let u(x1, x2, x3, t) =(
u1(x1, x2, x3, t), u2(x1, x2, x3, t), u3(x1, x2, x3, t)

)
and p(x1, x2, x3, t) denote the velocity and



the pressure of the fluid at point (x1, x2, x3) and time t, respectively. Then u and p obeys
a system of PDEs, called the incompressible Navier-Stokes equations:

ρ(ut + u ¨ ∇xu) +∇xp = µ∆xu , (1.11a)
divu = 0 , (1.11b)

where ρ is the density of the fluid, ut denotes the partial derivative of u w.r.t. t, ∇xp is the
gradient of the pressure function p, µ is the dynamical viscosity with dimension of mass per
length per time , and

u ¨ ∇xu =
3
ÿ

j=1

uj
Bu
Bxj

= u1
Bu
Bx1

+ u2
Bu
Bx2

+ u3
Bu
Bx3

,

∆xu ”

3
ÿ

j=1

B 2u
Bx2j

=
B 2u
Bx21

+
B 2u
Bx22

+
B 2u
Bx23

,

divu ”

3
ÿ

j=1

Buj
Bxj

=
Bu1
Bx1

+
Bu2
Bx2

+
Bu3
Bx3

.

Let ℓc denote the characteristic length, and uc denote the characteristic speed (which implies
that tc = ℓc/uc is the characteristic time). Define τ =

t

tc
, y =

x

ℓc
, and

v(y1, y2, y3, τ) =
u
uc
(ℓcy1, ℓcy2, ℓcy3, tcτ) ,

q(y1, y2, y3, τ) =
p

u2cρ
(ℓcy1, ℓcy2, ℓcy3, tcτ) .

Then with ν =
µ

ρ
denoting the kinetic viscosity, we have

vτ + v ¨ ∇yv +∇yq =
ν

ℓcuc
∆yv ,

divyv = 0 ,

where v ¨ ∇yv, ∆yv and divyv are defined similarly. The dimensionless number Re ”
ℓcuc
ν

is called the Reynolds number, and the equations above read

vτ + v ¨ ∇yv +∇yq =
1

Re∆yv ,

divyv = 0 .

1.3 Scaling Arguments
In mathematics there are lots of inequalities that involve comparison of integrals of functions
and their derivatives. For example, let C 1

0 (R) denote the collection of all continuously
differentiable functions defined on R that vanish at infinity; that is, if f P C 1

0 (R), then
f P C 1(R) and lim

xÑ˘8
f(x) = 0. Then if f P C 1

0 (R) and x P R,
ż x

´8

f 1(t) dt = f(x) and
ż 8

x

f 1(t) dt = ´f(x) .



Therefore,

2|f(x)| ď

ż x

´8

ˇ

ˇf 1(x)
ˇ

ˇ dt+

ż 8

x

ˇ

ˇf 1(t)
ˇ

ˇ dt =

ż 8

´8

ˇ

ˇf 1(t)
ˇ

ˇ dt @ f P C 1
0 (R) , x P R .

The above inequality then shows that

max
xPR

ˇ

ˇf(x)
ˇ

ˇ ď
1

2

ż 8

´8

ˇ

ˇf 1(x)
ˇ

ˇ dx @ f P C 1
0 (R) . (1.12)

The scaling arguments sometimes is useful to determined what kind of integrals can be
compared.

Example 1.13. Suppose that we have the following inequality (which can be thought as a
generalization of (1.12))

max
xPR

ˇ

ˇf(x)
ˇ

ˇ ď C
( ż 8

´8

ˇ

ˇf 1(x)
ˇ

ˇ

p
dx

)r
@ f P C 1

0 (R) , (1.13)

where C is a constant independent of the choice of f . Find the relation between p, q, r, s.
Let f P C 1

0 (R) be given. For given constants M,L ą 0, define

u(x) =Mf(Lx) .

Then clearly u P C 1
0 (R); thus (1.13) (which is assumed to be valid) implies that

max
xPR

ˇ

ˇu(x)
ˇ

ˇ ď C
( ż 8

´8

ˇ

ˇu 1(x)
ˇ

ˇ

p
dx

)r
.

Since max
xPR

ˇ

ˇu(x)
ˇ

ˇ =M max
xPR

ˇ

ˇf(x)
ˇ

ˇ and the substitution of variables implies that
ż 8

´8

ˇ

ˇu 1(x)
ˇ

ˇ

p
dx =

ż 8

´8

ˇ

ˇMLf 1(Lx)
ˇ

ˇ

p
dx =MpLp´1

ż 8

´8

ˇ

ˇf 1(x)
ˇ

ˇ

p
dx ,

we have
max
xPR

ˇ

ˇf(x)
ˇ

ˇ ď CMpr´1L(p´1)r
( ż 8

´8

ˇ

ˇf 1(x)
ˇ

ˇ

p
dx

)r
.

If pr ‰ 1 or (p ´ 1)r ‰ 0, we can let M,L approach 0 or 8 to make the right-hand side
approach zero which shows f ” 0, an impossible situation. Therefore, we must have pr = 1

and (p ´ 1)r = 0 which implies that p = r = 1 is the only possible case for (1.13) to hold.

Example 1.14 (Hölder’s inequality). Suppose that one knows that for some p, q, r, s P R,
we have the following inequality

ż

Rn

ˇ

ˇf(x1, ¨ ¨ ¨ , xn)g(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ d(x1, ¨ ¨ ¨ , xn)

ď

( ż
Rn

ˇ

ˇf(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

p
d(x1, ¨ ¨ ¨ , xn)

)r( ż
Rn

ˇ

ˇg(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

q
d(x1, ¨ ¨ ¨ , xn)

)s (1.14)

for all f P Lp(Rn) and g P Lq(Rn), where that a function h belongs to class Lr(Rn) means
that h : Rn Ñ R and

ż

Rn

ˇ

ˇh(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

r
d(x1, ¨ ¨ ¨ , xn) ă 8 .



We would like to know the relation between p, q, r, s.
Let f, g : Rn Ñ R be such that f P Lp(Rn) and g P Lq(Rn). For M1,M2, L ą 0, define

u(x1, ¨ ¨ ¨ , xn) =M1f(Lx1, ¨ ¨ ¨ , Lxn) and v(x1, ¨ ¨ ¨ , xn) =M2g(Lx1, ¨ ¨ ¨ , Lxn) .

Then u, v : Rn Ñ R. Moreover, the change of variables formula implies that
ż

Rn

ˇ

ˇu(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

p
d(x1, ¨ ¨ ¨ , xn) =Mp

1L
´n

ż

Rn

ˇ

ˇf(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

p
d(x1, ¨ ¨ ¨ , xn) ,

ż

Rn

ˇ

ˇv(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

q
d(x1, ¨ ¨ ¨ , xn) =M q

2L
´n

ż

Rn

ˇ

ˇg(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

q
d(x1, ¨ ¨ ¨ , xn) ;

(1.15)

thus u P Lp(Rn) and v P Lq(Rn). Since (1.14) is assumed to be known, we must have
ż

Rn

ˇ

ˇu(x1, ¨ ¨ ¨ , xn)v(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ d(x1, ¨ ¨ ¨ , xn)

ď

( ż
Rn

ˇ

ˇu(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

p
d(x1, ¨ ¨ ¨ , xn)

)r( ż
Rn

ˇ

ˇv(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

q
d(x1, ¨ ¨ ¨ , xn)

)s
.

By the fact that
ż

Rn

ˇ

ˇu(x1, ¨ ¨ ¨ , xn)v(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ d(x1, ¨ ¨ ¨ , xn)

=M1M2L
´n

ż

Rn

ˇ

ˇf(x1, ¨ ¨ ¨ , xn)g(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ d(x1, ¨ ¨ ¨ , xn) ,

(1.15) further implies that

M1M2L
´n

ż

Rn

ˇ

ˇf(x1, ¨ ¨ ¨ , xn)g(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ d(x1, ¨ ¨ ¨ , xn)

=

ż

Rn

ˇ

ˇu(x1, ¨ ¨ ¨ , xn)v(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ d(x1, ¨ ¨ ¨ , xn)

ď

( ż
Rn

ˇ

ˇu(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

p
d(x1, ¨ ¨ ¨ , xn)

)r( ż
Rn

ˇ

ˇv(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

q
d(x1, ¨ ¨ ¨ , xn)

)s
ď Mpr

1 M
qs
2 L

´nr´ns
( ż

Rn

ˇ

ˇf(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

p
d(x1, ¨ ¨ ¨ , xn)

)r
ˆ

ˆ

( ż
Rn

ˇ

ˇg(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

q
d(x1, ¨ ¨ ¨ , xn)

)s
.

Therefore, the same reason in Example 1.13 shows that pr = 1, qs = 1 and ´n = ´nr´ns;
thus r = 1

p
, s = 1

q
and we have

ż

Rn

ˇ

ˇf(x1, ¨ ¨ ¨ , xn)g(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ d(x1, ¨ ¨ ¨ , xn)

ď

ż

Rn

ˇ

ˇf(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

p
d(x1, ¨ ¨ ¨ , xn)

) 1
p
( ż

Rn

ˇ

ˇg(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

q
d(x1, ¨ ¨ ¨ , xn)

) 1
q
,

(1.16)

where 1

p
+

1

q
= 1.



Remark 1.15. Later on we will simply write
ż

Rn
f(x1, ¨ ¨ ¨ , xn) d(x1, ¨ ¨ ¨ , xn) as

ż

Rn
f(x) dx

with x = (x1, ¨ ¨ ¨ , xn) in mind.

Remark 1.16. Inequality (1.16) in fact holds for 1 ă p, q ă 8 and 1

p
+

1

q
= 1. In general,

suppose that Ω Ď Rn is a region on which two functions u, v are defined so that u P Lp(Ω)

and v P Lq(Ω) for some 1 ă p, q ă 8 and 1

p
+

1

q
= 1, where that a function h belongs to

class Lr(Ω) means that h : Ω Ñ R and
ż

Ω

ˇ

ˇh(x)
ˇ

ˇ

r
dx ”

ż

Ω

ˇ

ˇh(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ

r
d(x1, ¨ ¨ ¨ , xn) ă 8 .

Letting f = 1Ωu and g = 1Ωv in (1.14), where 1Ω is the indicator function of Ω given by

1Ω(x) =

"

1 if x P Ω ,

0 otherwise ,

we find that
ż

Ω

ˇ

ˇu(x)v(x)
ˇ

ˇ dx ď

( ż
Ω

ˇ

ˇu(x)
ˇ

ˇ

p
dx

) 1
p
( ż

Ω

ˇ

ˇv(x)
ˇ

ˇ

q
dx

) 1
q
. (1.17)

The inequality above is called the (general) Hölder inequality.

Example 1.17 (Sobolev’s inequalities). The simplest Sobolev’s inequalities is of the form( ż
Rn

ˇ

ˇf(x)
ˇ

ˇ

q
dx

)s
ď C

( ż
Rn

ˇ

ˇ(∇f)(x)
ˇ

ˇ

p
dx

)r
@ f P C 1

c (Rn) , (1.18)

where C is a generic constant independent of f , and C 1
c (Rn) denotes the collection of

continuously differentiable functions that vanish outside certain balls. In this example we
determine the relation among n, p, q, r, s.

Let f : Rn Ñ R be such that f P C 1
c (Rn). For given constants M,L ą 0, define

u(x) =Mf(Lx). Then u P C 1
c (Rn); thus u also satisfies( ż

Rn

ˇ

ˇu(x)
ˇ

ˇ

q
dx

)s
ď C

( ż
Rn

ˇ

ˇ(∇u)(x)
ˇ

ˇ

p
dx

)r
. (1.19)

On the other hand, the change of variables formula implies that
ż

Rn

ˇ

ˇu(x)
ˇ

ˇ

q
dx =M qL´n

ż

Rn

ˇ

ˇf(x)
ˇ

ˇ

q
dx ,

ż

Rn

ˇ

ˇ(∇u)(x)
ˇ

ˇ

p
dx =MpLp´n

ż

Rn

ˇ

ˇ(∇f)(x)
ˇ

ˇ

p
dx ;

thus (1.19) implies that

M qsL´ns
( ż

Rn

ˇ

ˇf(x)
ˇ

ˇ

q
dx

)s
ď CMprL(p´n)r

( ż
Rn

ˇ

ˇ(∇f)(x)
ˇ

ˇ

p
dx

)r
.

Since (1.18) holds for all M,L ą 0, we must have pr = qs and (p ´ n)r = ´ns. If
pr = qs = α, we find that (1.19) becomes( ż

Rn

ˇ

ˇu(x)
ˇ

ˇ

q
dx

)α
q

ď C
( ż

Rn

ˇ

ˇ(∇u)(x)
ˇ

ˇ

p
dx

)α
p

and n, p, q must satisfy
n

q
+
p ´ n

p
= 0

(
or 1

q
=

1

p
´

1

n

)
.



Chapter 2

Ordinary Differential Equations

Definition 2.1. A differential equation is a mathematical equation that relates some un-
known function with its derivatives. The unknown functions in a differential equations are
sometimes called dependent variables, and the variables which the derivatives of the
unknown functions are taken with respect to are sometimes called the independent vari-
ables. A differential equation is called an ordinary differential equation (ODE) if it
contains an unknown function of one independent variable and its derivatives. A differ-
ential equation is called a partial differential equation (PDE) if it contains unknown
multi-variable functions and their partial derivatives.

We note that in most of the mathematical ODE models, the independent variable is the
time variable t or the spatial variable x.

Definition 2.2. The order of a differential equation is the order of the highest-order
derivatives present in the equation. A differential equation of order 1 is called first order,
order 2 second order, etc.

Remark 2.3. It is commonly assumed that an ordinary differential equation of order n

F (t, y, y 1, ¨ ¨ ¨ , y(n´1), y(n)) = 0 (if the independent variable is t)

can be written as
y(n)(t) = f(t, y, y 1, ¨ ¨ ¨ , y(n´2), y(n´1)) .

Moreover, given a differential equation above, we can define a vector-valued function z =(
y, y 1, y 11, ¨ ¨ ¨ , y(n´1)

)T and write the ODE above as

z 1(t) =
d

dt


z1
z2
...

zn´1

zn

 =


z2
z3
...
zn

f(t, z1, z2, ¨ ¨ ¨ , zn)

 = f (t, z) (2.1)

which is a first order ODE with a vector-valued unknown.
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Definition 2.4. The ordinary differential equation

F (t, y, y 1, ¨ ¨ ¨ , y(n´1), y(n)) = y(n)(t) ´ f(t, y, y 1, ¨ ¨ ¨ , y(n´2), y(n´1)) = 0 (2.2)

is said to be linear if

F (t, cy, cy 1, ¨ ¨ ¨ , cy(n´1), cy(n)) ´ F (t, 0, 0, ¨ ¨ ¨ , 0)

= c
[
F (t, y, y 1, ¨ ¨ ¨ , y(n´1), y(n)) ´ F (t, 0, 0, ¨ ¨ ¨ , 0)

] @ c P R . (2.3)

The ODE (2.2) is said to be nonlinear if it is not linear.

2.1 Initial Value Problems
Definition 2.5. An initial value problem (IVP) is a (system of) differential equation

y(n)(t) = f(t, y, y 1, ¨ ¨ ¨ , y(n´2), y(n´1)) . (2.4a)

equipped with an initial condition

y(t0) = y0, y 1(t0) = y1, y 11(t0) = y2, ¨ ¨ ¨ y(n´1)(t0) = yn´1 , (2.4b)

where t0 is a given point/time, and y0, y1, ¨ ¨ ¨ , yn´1 are given numbers. A solution to the
IVP (2.4) is a function y defined on an open interval I so that t0 P I and (2.4) is satisfied.

Example 2.6. In Example 1.10 we have talked about the Malthus model

dp

dt
= rp , p(0) = p0

for the growth of population. In this model, the growth rate is assumed to be positive.
However, the same differential equation can be used to model the decay of radioactive
substance such as plutonium (鈽). If p(t) is the total amount of such kind of substance at
time t, the “growth” rate dp

dt
is proportional to the total amount p, except that the “growth”

rate r is negative. In such a case, r is called the decay rate.
The model has linear ODE and usually is called linear model.

Example 2.7 (Spring-mass system with or without Friction). Consider an object of mass
m attached to a spring with Hook’s constant k. Let x(t) denote the signed distance between
the object and the equilibrium position at time t. If there is no friction, by the Newton
second law of motion we find that x obeys the ODE

mẍ = ´kx .

When the friction is under consideration, by the fact that the friction is proportional to the
velocity, we find that

mẍ = ´kx ´ rẋ .



If in addition some external force f(t) are exerted on the mass, the model becomes

mẍ = ´kx ´ rẋ+ f .

We note that the ODE above is linear since the function

F (t, x, ẋ, ẍ) = mẍ+ rẋ+ kx ´ f(t)

satisfies (2.3).
If the initial position and the initial velocity of the object is x(0) = x0 and x 1(0) = x1,

then x(t) satisfies the IVP

mẍ = ´kx ´ rẋ+ f , x(0) = x0 , x 1(0) = v0 . (2.5)

The ODE in (2.5) is linear.

Example 2.8 (Oscillating pendulum). A simple pendulum consists of a mass m hanging
from a string of length L and fixed at a pivot point P . When displaced to an initial angle
and released, the pendulum will swing back and forth with periodic motion.

Figure 2.1: A simple pendulum system

Let θ(t) denote the angle, measured from the vertical dashed line (see figure 2.1), at
time t. By Newton’s second law,

mLθ̈ = ´mg sin θ , θ(0) = θ0 , θ 1(0) = ω0 .

The ODE above is a nonlinear ODE.

Example 2.9 (Lotka-Volterra or Prey-Predator model). Suppose that two different species
of animals interact within the same environment or ecosystem, and suppose further that the
first species eats only vegetation and the second eats only the first species. In other words,
one species is a predator (掠食者) and the other is a prey (獵物).

Let p(t) and q(t) denote, respectively, the populations of the prey and the predator. If
there is no prey, then the population of the predator should decrease/decay and follows

dq

dt
= ´βq , β ą 0 .



When preys are present in the environment, it seems reasonable that the number of encoun-
ters or interactions between these two species per unit time is jointly proportional to their
populations p and q; that is, proportional to the product pq. Thus when preys are present,
the predator are added to the system at a rate bpq, b ą 0. In other words, the population
of q should follows

dq

dt
= ´βq + δpq , β, δ ą 0 .

On the other hand, if there is no predator, the population of the prey should follow the
Malthus model (assuming that the supply of food is always sufficient); however, the popu-
lation of the prey will decrease by the rate at which the preys are consumed during their
encounters with the predator; thus

dp

dt
= αp ´ γpq , α, γ ą 0 .

Therefore, we reach at the predator-prey model (or the Lotka-Volterra model):
dp

dt
= αp ´ γpq = p(α ´ γq) , (2.6a)

dq

dt
= ´βq + δpq = q(´β + δp) . (2.6b)

An initial condition p(0) = p0, q(0) = q0 can be imposed so that it becomes an IVP.
The ODE (2.6) is nonlinear since by letting z = [p, q]T, we can write (2.6) as

ż = f (t, z) =
[
α 0
0 ´β

]
z +

[
´γz1z2
δz1z2

]
which shows that F (t, cz, cż) ´ F (t, 0, 0) ‰ c

[
F (t, z, ż) ´ F (t, 0, 0)

]
if c ‰ 1.

Example 2.10. Now we consider another spring-mass system in which there are two objects,
of mass m1 and m2, moving on a frictionless surface under the influence of external forces
F1(t) and F2(t), and they are also constrained by the three springs whose Hooke’s constants
are k1, k2 and k3, respectively (see figure 2.2).

Figure 2.2: A two-mass, three-spring system

Then the equations for the coordinate x1 and x2, measured from the equilibrium positions
of mass m1 and m2 respectively, are given by

m1
d2x1
dt2

= ´k1x1 + k2(x2 ´ x1) + F1 , (2.7a)

m2
d2x2
dt2

= ´k2(x2 ´ x1) ´ k3x2 + F2 . (2.7b)



Reason: Let L1, L2, L3 be the length of the unconstrained springs, and ℓ1, ℓ2, ℓ3 be the
increment of the springs in equilibrium. Then

k1ℓ1 = k2ℓ2 = k3ℓ3 . (2.8)

Let x(t) and y(t) be the position of massm1 andm2, measured from the left end, respectively.
Then x(t) and y(t) satisfy

m1
d2x

dt2
= ´k1(x ´ L1) + k2(y ´ x ´ L2) + F1 , (2.9a)

m2
d2y

dt2
= ´k2(y ´ x ´ L2) + k3(L1 + L2 + L3 + ℓ1 + ℓ2 + ℓ3 ´ y ´ L3) + F2

= ´k2(y ´ x ´ L2) + k3(L1 + L2 + ℓ1 + ℓ2 + ℓ3 ´ y) + F2 . (2.9b)

Let x1, x2 be the position of masses m1 and m2 measured from the equilibrium position;
that is, x1 = x´L1 ´ ℓ1 and x2 = y´L1 ´ ℓ1 ´L2 ´ ℓ2. Then (2.7) follows from using (2.8)
in (2.9).

Example 2.11 (Kepler’s laws of planetary motion). Kepler’s laws of planetary motion
describe the motion of planets around the Sun and state that

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time.

3. The square of the orbital period of a planet is directly proportional to the cube of the
semi-major axis of its orbit.

Suppose that planet under consideration is Earth. Since Earth moves on the plane of the
ecliptic（黃道面）, we can treat the orbit of Earth as a plane curve. Now we introduce a
polar coordinate system and a Cartesian coordinate system on this plane as follows:

1. Let the sun be the pole of the polar coordinate system, and fixed a polar axis on this
plane.

2. Let i be the unit vector in the direction of the polar axis, and j be the corresponding
unit vector obtained by rotating i counterclockwise by π

2
.

Suppose the position of the planet on the planet at time t P I is given by r(t) = x(t)i+y(t)j.
For each t P I, let (r(t), θ(t)) be the polar representation of (x(t), y(t)) in the trajectory.
We would like to determine the relation that r(t) and θ(t) satisfy.

Define two vectors pr(t) = cos θ(t)i + sin θ(t)j and pθ(t) = ´ sin θ(t)i + cos θ(t)j. Then
r = rpr. Moreover, let M and m be the mass of the sun and the planet, respectively. Then
Newton’s second law of motion implies that

´
GMm

r2
pr = mr 11 . (2.10)



By the fact that

pr 1 = (´ sin θ, cos θ)θ 1 = θ 1
pθ and pθ 1 = ´(cos θ, sin θ)θ 1 = ´θ 1

pr ,

we find that

r 11 =
d

dt

(
r 1
pr + rθ 1

pθ
)
= r 11

pr + r 1θ 1
pθ + r 1θ 1

pθ + rθ 11
pθ ´ r(θ 1)2pr

=
[
r 11 ´ r(θ 1)2

]
pr +

[
2r 1θ 1 + rθ 11

]
pθ .

Therefore, (2.10) implies that

´
GM

r2
pr =

[
r 11 ´ r(θ 1)2

]
pr +

[
2r 1θ 1 + rθ 11

]
pθ .

Since pr and pθ are linearly independent, we must have

´
GM

r2
= r 11 ´ r(θ 1)2 , (2.11a)

2r 1θ 1 + rθ 11 = 0 . (2.11b)

Note that (2.11b) implies that (r2θ 1) 1 = 0; thus r2θ 1 is a constant. Since mr2θ 1 is the
angular momentum, (2.11b) implies that the angular momentum is a constant, so-called the
conservation of angular momentum（角動量守恆）.

Let ℓ be the constant angular momentum so that

ℓ = mr2θ 1 . (2.12)

Now assume that in each small time interval J Ď I of interest, θ : J Ñ R is one-to-one so
that the inverse function of θ exists. Then t = t(θ), and every function of t can be viewed
as a function of θ for t P J .

For a function f of t, we let ḟ(θ) denote d

dθ
f(t(θ)) and f̈(θ) denote d2

dθ2
f(t(θ)). In other

words, ḟ denotes the derivative (in θ) of the composite function f ˝ t. By the chain rule,

d

dt
=
dθ

dt

d

dθ
= θ 1 d

dθ
=

ℓ

mr2
d

dθ
or equivalently, f 1 =

ℓ

mr2
ḟ ;

thus r 1 =
ℓ

m

ṙ

r2
. Let u =

1

r
. Then u̇ = ´

ṙ

r2
which implies that r 1 = ´

ℓ

m
u̇. Therefore,

r 11 = ´
ℓ2

m2r2
ü = ´

ℓ2

m2
üu2 ;

thus (2.11a) and (2.12) together show that

´GMu2 = ´
ℓ2

m2
üu2 ´ r

( ℓ

mr2

)2

= ´
ℓ2

m2
üu2 ´

ℓ2

m2
u3 .

or equivalently,
ü+ u =

GMm2

ℓ2
.



The general solution to the ODE above is

u = C1 cos θ + C2 sin θ +
GMm2

ℓ2
= C cos(θ ´ θ0) +

GMm2

ℓ2
.

Choose the polar axis so that θ0 = 0. Using that u =
1

r
, we find that

1

r
=
GMm2

ℓ2
(1 + e cos θ) , (2.13)

where e =
Cℓ2

GMm2
. (2.13) is the polar presentation of a conic section, and this proves

Kepler’s first law of planetary motion.

Example 2.12. Suppose that f : R Ñ R is a differentiable function. To find a relative
minimum of f , we first look for critical points of f . In general, it may not be easy to solve
for zeros of f 1. In this example we provide a way to “find” possible local minimum of f .

Suppose that x0 is given. If f 1(x0) ă 0, we expect that the value of f(x) will be smaller
than f(x0) when x is close but on the right-hand side of x0. Similarly, if f 1(x0) ą 0, then
the value of f(x) will be smaller than f(x0) when x is close but on the left-hand side of
x0. Therefore, for a given point x0, we can localize the position of the nearest critical point
where f attains a local minimum by “moving” the position of x0 to the right or to the left
based on the sign of f 1. This motivates the following IVP

x 1 = ´f 1(x) , x(0) = x0 .

In general, for a differentiable function f : Rn Ñ R, we use

x 1 = ´(∇f)(x) , x(0) = x0 ,

where x = (x1, x2, ¨ ¨ ¨ , xn), to find a critical point near x0.

Theorem 2.13 (Existence and Uniqueness of Solution/Fundamental theorem of ODE).
Consider the initial value problem

y(n) = f(t, y, y 1, ¨ ¨ ¨ , y(n´1)) , y(t0) = y0 , y 1(t0) = y1 , ¨ ¨ ¨ y(n´1)(t0) = yn´1 . (2.14)

If f and the first partial derivatives of f with respect to all its variables, possibly except t,
are continuous functions in some rectangular domain R = [a, b] ˆ [c0, d0] ˆ [c1, d1] ˆ ¨ ¨ ¨ ˆ

[cn´1, dn´1] that contains the point (t0, y0, y1, ¨ ¨ ¨ , yn´1) in the interior, then the initial value
problem has a unique solution φ(t) in some interval I = (t0 ´ h, t0 + h) for some positive
number h.

2.2 Boundary Value Problems
In this section we only consider ODE of the form

y 11 + p(x)y 1 + q(x)y = g(x) , (2.15)



where p, q and g are given functions, and y = y(x) is the unknown function. Instead of
imposing the initial condition y(t0) = y0 and y 1(t0) = y1, sometimes the following four kinds
of boundary condition can be imposed:

1. y(α) = y0, y(β) = y1; 2. y(α) = y0, y 1(β) = y1;

3. y 1(α) = y0, y(β) = y1; 4. y 1(α) = y0, y 1(β) = y1,

where α, β, y0 and y1 are given numbers. Such kind of combination of ODE and boundary
condition is called a (two-point) boundary value problem (BVP), and a solution y to a
BVP must be defined on the interval I = [α, β], as well as satisfy the ODE and the boundary
condition.

Example 2.14. In this example we reconsider the ODE in the spring-mass system

mẍ = ´kx ´ rẋ+ f(t) .

We explain the meaning of the different boundary condition as follows:

1. x(0) = x0 and x(T ) = x1: the initial and the terminal position of the mass are given.

2. x(0) = x0 and x 1(T ) = v1: the initial position and the terminal velocity of the mass
are given.

3. x 1(0) = v0 and x(T ) = x1: the initial velocity and the terminal position of the mass
are given.

4. x 1(0) = v0 and x 1(T ) = v1: the initial and the terminal velocity of the mass are given.

Example 2.15. Again we consider the ODE

m
d2h

dt2
= ´

GMm

(R + h)2
.

in Example 1.9. This time we do not require that initial height h(0) and the initial velocity
h 1(0) are given but instead we want the object to reach certain height H at time t = T .
Then the BVP is written as

m
d2h

dt2
= ´

GMm

(R + h)2
, h(0) = 0 , h(T ) = H.

Similarly, if we want the object to reach certain velocity V at time t = T , then we have the
BVP

m
d2h

dt2
= ´

GMm

(R + h)2
, h(0) = 0 , h 1(T ) = V.

Consider the two-point boundary value problem

y 11 + p(x)y 1 + q(x)y = g(x) , y(α) = y0, y(β) = y1 . (2.16)



Let z(x) = y(x) ´
x´ α

β ´ α
y1 ´

x´ β

α ´ β
y0. Then z satisfies

z 11 + p(x)z 1 + q(x)z = G(x) , z(α) = z(β) = 0 , (2.17)

where G(x) = g(x) ´ p(x)
y0 ´ y1
α ´ β

´ q(x)
(x´ α

β ´ α
y1 +

x´ β

α ´ β
y0
)
. Therefore, in general we can

assume the homogeneous boundary condition y0 = y1 = 0 in (2.16). Similarly, ODE (2.15)
with the other three kinds of boundary conditions can also be rewritten as a BVP with
homogeneous boundary condition.

Remark 2.16. Even though the initial value problem

y 11 + p(t)y 1 + q(t)y = g(t) , y(t0) = y0 , y 1(t0) = y1 (2.18)

looks quite similar to the boundary value problem (2.16), they actually differ in some very
important ways. For example, if p, q, g are continuous, the initial value problem (2.18)
always have a unique solution, while the boundary value problem (2.16) might have no
solution or infinitely many solutions:

1. y 11 + y = 0 with boundary condition y(0) = y(π) = 0 has infinite many solutions
yc(x) = c sinx.

2. y 11 + y = sinx with boundary condition y(0) = y(π) = 0 has no solution.

On the other hand, there are cases that (2.16) has a unique solution. For example, the
general solution to the boundary value problem

y 11 + 2y = 0

is given by
y(x) = C1 cos

?
2x+ C2 sin

?
2x ;

thus to validate the boundary condition y(0) = 1 and y(π) = 0, we must have C1 = 1 and
C2 = ´ cot

?
2π. In other words, the solution y(x) = cos

?
2x ´ cot

?
2π sin

?
2x.

The existence theory of the solution to (2.16) requires a totally different functional
framework, and will not be proved in this course. However, we will still state the existence
theory.

Theorem 2.17. Let α, β be real numbers and α ă β. Suppose that p : [α, β] Ñ R is
continuously differentiable, and q : [α, β] Ñ R is continuous. Then (2.16) (with y0 = y1 = 0)

has a solution if and only if g : [α, β] Ñ R is integrable and
ż β

α

g(x)φ(x) dx = 0

for all φ satisfying φ 11 ´ p(x)φ 1 +
(
q(x) ´ p 1(x)

)
φ = 0 and φ(α) = φ(β) = 0. The solution

is unique if the ODE y 11 + p(x)y 1 + q(x)y = 0 with y(α) = y(β) = 0 has only trivial solution
y ” 0.



2.3 Solving IVP Using Mablab
We can use the command “ode45” in Matlab to solve for the IVP (2.4). Suppose that we
want to solve the IVP

y(n) = f(t, y, y 1, ¨ ¨ ¨ , y(n´1)) , y(0) = y0, y
1(0) = y1, ¨ ¨ ¨ , y(n´1)(0) = yn´1

numerically using matlab.

Step 1: Write the IVP in the vector form y 1 = f (t,y) (form (2.1)) with initial condition
y(0) = y0. Note that usually you need to write the IVP in a dimensionless form and
then transform

Step 2: Write (and save) the function f in matlab.

Step 3: Once the function f is saved, use the command “ode45” (based on the adaptive
Runge-Kutta method) to solve the IVP: the format is

[t,y] = ode45(@name of the function,[starting time, terminal time], initial data)

where the output of this command has two pieces t and y (whose names can also be
changed and does not have to agree with the names you use in writing the function):

(a) t is a column vector whose components are the samples of time at which the
numerical solution evaluates.

(b) y is a m ˆ n matrix, where m is the total number of time samples, and n is the
dimension of the vector y.

To illustrate how these steps are carried out, we look at the following example.

Example 2.18. In this example we solve for the IVP (from the Lotka-Volterra model)

dp

dt
= ´0.16p+ 0.08pq , (2.19a)

dq

dt
= 4.5q ´ 0.9pq , (2.19b)

p(0) = 5, q(0) = 3 . (2.19c)

Let y = [p, q]T, and f (t,y) =
[

´0.16p+ 0.08pq

4.5q ´ 0.9pq

]
numerically using matlab. In matlab, the

function f can be given by the following m-file:

function yp = ODE RHS(t,y)
yp(1,1) = – 0.16*y(1,1) + 0.08*y(1,1)*y(2,1);

yp(2,1) = 4.5*y(2,1) – 0.9*y(1,1)*y(2,1);
(2.20)

where



1. the word “function” in the first line indicates that this m-file will be a function that
you can use in matlab.

2. yp is the name of the output variable, and t, y are the names of the input variables
(and the names can be changed); however, you should keep t (time) as the first input/
variable and y (the unknowns in the ODE) as the second input/variable in order to
use the built-in matlab ODE solver.

3. ODE RHS is the name of the function (and also the name of the file so that matlab
can see it) that will be used/recognized in matlab. The name can be changed but you
need to have this name different from built-in functions such as sin, exp, and etc.

4. In this example, the input y is a 2-d column vector. y(1,1) and y(2,1) denote the
first and second component of y, respectively. Similarly, the output yp is also a 2-d
column vector, and yp(1,1) and yp(2,1) denote the first and second component of yp,
respectively.

Once the function is saved, you can check if matlab is able to use this function by
assigning the value of t and y (remember, y has to be a 2-d column vector) and see if it
outputs the correct value. For example, in the main window of matlab you can type

ODE RHS(1,[2;5])

where [2; 5] is the column vector [2, 5]T, and it should output something like this

ąą ODE RHS(1,[2;5])

ans =

0.4800

13.5000

which means the first component of the output (in our code it is yp(1,1)) is 0.48 while the
second component of the output (in our code it is yp(2,1)) is 13.5.

For the readability of codes, we recommender the reader to have (2.20) written, at least,
as

function yp = ODE RHS(t,y)
p = y(1,1);

q = y(2,1);

yp(1,1) = – 0.16*p + 0.08*p*q;

yp(2,1) = 4.5*q – 0.9*p*q;



As long as the function f (named ODE RHS) is saved, we can use the matlab built-in
ODE solver “ode45” to solve for the IVP (2.19). In the main window of matlab, type

[t,y] = ode45(@ODE RHS,[0,10],[5;3]);

to solve (numerically) for the IVP in the time interval [0, 10] and initial data [5, 3]T. In this
case, the solution y is an mˆ 2 matrix: the first column is the value of p (at those sampled
time t) and the second column is the value of q (at those sampled time t).
‚ Visualization of the numerical solution: In the following we provide two codes

figure(1)
title(’The population of fox and rabbit versus time’)

hold on;

plot(t,y(:,1),’b’);

plot(t,y(:,2),’r’);

legend(’The population of fox’,’The population of rabbit’)

xlabel(’time’)

ylabel(’population’)

which outputs

and

figure(2)
title(’The phase portrait’)

hold on;

plot(y(:,1),y(:,2),’b’);

xlabel(’population of fox’)

ylabel(’population of rabbit’)



which outputs

for the visualization of the numerical solution. The figures themselves should explain the
codes clearly.

Example 2.19. In this example we look for the minimum of the function f(x, y) = xe´x2´y2

using gradient flows. First we provide the graph of f so that we have some information about
this function. To do this, do the following:

[x,y] = meshgrid(–2:0.1:2,–2:0.1:2);
z = x.*exp(–x.^2–y.^2);

surf(z);

and this will produce the following figure

Figure 2.3: The graph of the function f(x, y) = xe´x2´y2 .



From the graph of f , we find that there is a minimum and a maximum for f .
Now we try to find the minimum using the gradient flow. We compute the first partial

derivative of f and obtain that

fx(x, y) = (1 ´ 2x2)e´x2´y2 and fy(x, y) = ´2xye´x2´y2 .

Therefore, we will focus on the following ODE

d

dt

[
x
y

]
= ´(∇f)(x, y) =

[
(2x2 ´ 1)e´x2´y2

2xye´x2´y2

]
” F

(
t, [x, y]1

)
.

As in the previous example, we first name (and save) the function F as ODE RHS
(again, the name of the function can be changed) as follows:

function yp = ODE RHS(t,INPUT)
x = INPUT(1,1);

y = INPUT(2,1);

yp(1,1) = (2*x^2–1)*exp(–x^2–y^2);

yp(2,1) = 2*x*y*exp(–x^2–y^2);

Here we rename the second input of the function as “INPUT” in order to differentiate this
input from the real variable y in the equation. Maybe it is much clearer if we rewrite the
code as

function zp = ODE RHS(t,z)
x = z(1,1);

y = z(2,1);

zp(1,1) = (2*x^2–1)*exp(–x^2–y^2);

zp(2,1) = 2*x*y*exp(–x^2–y^2);

Once we finish saving the function ODE RHS, we can use

[t,y] = ode45(@ODE RHS,[0,10],[0.5;0.5]);

or
[t,y] = ode45(@(t,y) ODE RHS(t,y),[0,10],[0.5;0.5]);

é there is a space here

to find the numerical solution of the gradient flow with initial condition [x(0), y(0)] =

[0.5, 0.5]. We are only interested in the final destination of the flow; thus we use

y(end,:)



to find the last row of y (note that the unknown is a 2-d column vector, so the output y
using “ode45” will be an N ˆ 2 matrix) and obtain that

ąą y(end,:)

ans =

– 0.7071 0.0006

From the computation of the gradient of f , we find that the critical points of f should be(
˘

1
?
2
, 0
)
. So, why does the gradient flow not produce the correct/approximated critical

point? This is because the time interval is too small so that the flow has not reach its final
destination yet. Let us replace the time interval as [0, 20] and rerun the whole process again,
one should obtain y(end,:) = [ – 0.7071 0.0000].
‚ Geometric point of view: The solution to the IVP

d

dt

[
x
y

]
= ´(∇f)(x, y) , (2.21a)[

x(0)
y(0)

]
=

[
x0
y0

]
(2.21b)

produces a curve (x(t), y(t)), where t belongs to some time interval (for example [0, 10] or
[0, 20] in our previous tests). This curve is called an integral curve of the direction field
´(∇f)(x, y), and the initial data (x0, y0) is the point where the integral curve starts and
is called the starting point of the curve (in the code above the starting point is (0.5, 0.5)).
The ODE (2.21a) shows that the tangent direction of the integral curve should agree with
the direction field.

Let us visualize this by plotting first the vector field ´(∇f). To plots a vector u =

(x component, y component) at the point p = (x coordinate, y coordinate), we use the com-
mand “quiver” in the following way:

quiver(x coordinate, y coordinate, x component, y component)

For example, if you want to plot 4 vectors (1, 1), (´1,´1), (1,´1) and (´1, 1) at 4 points
(1, 1), (0, 0), (1, 0) and (0, 1), respectively, you can do the following:

L = [1,1;0,0;1,0;0,1];
V = [1,1;–1,–1;1,–1;–1,1];

quiver(L(:,1),L(:,2),V(:,1),V(:,2));

and the following figure will be produced:



Note that if you replace the last line of commands by “quiver(L,V)”, it will produce garbages.
You need to give “quiver” the x coordinate and y coordinate of base points, as well as the x
component and y component of vectors, separately, in order to have the correct plot. Now,
since we have build up a grid using “[x,y] = meshgrid(-2:.1:2,-2:.1:2);”, we can simply use

quiver(x,y,(2*x.^2–1).*exp(–x.^2–y.^2),2*x.*y.*exp(–x.^2–y.^2))

to produce the following figure of the vector field:

We can also add the level sets of f onto the plot by the following command

contour(x,y,z)

so that we obtain



Finally, we plot the integral curve (in red color) using

plot(y(:,1),y(:,2),’r’)

after the ode solver “[t,y] = ode45(@ODE RHS,[0,20],[0.5;0,5]);” is applied. You should be
able to obtain the following figure:

We note that the tangent direction of the integral curve is indeed parallel to the vector
field ´(∇f), and the integral curve is perpendicular to the level set of f (which agrees with
what we learned in Calculus).

We summarize our codes in the following (in case you cannot reproduce the result):

[x,y] = meshgrid(–2:0.1:2,–2:0.1:2);
z = x.*exp(–x.^2–y.^2);

figure(1)

title(’f(x,y) = x exp(–x^2–y^2)’)

hold on;

quiver(x,y,(2*x.^2–1).*exp(–x.^2–y.^2),2*x.*y.*exp(–x.^2–y.^2))

contour(x,y,z)

[t,y] = ode45(@ODE RHS,[0,20],[0.5;0.5]);

plot(y(:,1),y(:,2),’r’);

axis equal;

legend(’vector field –(znabla f)’,’level sets of f’,’integral curve’)



Chapter 3

Partial Differential Equations

3.1 Models with One Temporal Variable and One Spa-
tial Variable

3.1.1 The 1-dimensional conservation laws

Suppose that a substance of interest lives in a 1-dimensional space such as a tube. Let
u(x, t) be the density or concentration of the substance at position x and time t. Then

ż x+∆x

x

u(y, t) dt

is the total amount of the substance in the interval I = [x, x + ∆x] at time t; thus during
the time period [t, t + ∆t], the change of the amount of the substance in the interval I in
the time period [t, t+∆t] is given by

ż x+∆x

x

u(y, t+∆t) dt ´

ż x+∆x

x

u(y, t) dt =

ż x+∆x

x

[
u(y, t+∆t) ´ u(y, t)

]
dy .

On the other hand, there are two sources of changing the amount of the substance in the
interval I:

1. a flux that describes any effect that appears to pass or travel the substance through
points.

2. a source that will release or absorb the substance in this interval.

Let f denote the flux and q denote the source. Then in the time interval [t, t + ∆t] the
amount of the substance flowing into I from the point x is given by

ż t+∆t

t

f(x, t1) dt1

while amount of the substance flowing out of I from the point x+∆x is given by
ż t+∆t

t

f(x+∆x, t1) dt1 .
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Moreover, the change of the amount of the substance in the interval I in the time period
[t, t+∆t] due to the source is given by

ż t+∆t

t

ż x+∆x

x

q(y, t1) dydt1 .

Therefore, the change of amount of the substance in the interval I in the time period [t, t+∆t]

is given by
ż t+∆t

t

[
f(x, t1) ´ f(x+∆x, t1)

]
dt1 +

ż t+∆t

t

ż x+∆x

x

q(y, t1) dydt1 .

As a consequence,
ż x+∆x

x

[
u(y, t+∆t) ´ u(y, t)

]
dy

=

ż t+∆t

t

[
f(x, t1) ´ f(x+∆x, t1)

]
dt1 +

ż t+∆t

t

ż x+∆x

x

q(y, t1) dydt1 .

Dividing both sides through∆x and then passing to the limit as∆x Ñ 0, by the fundamental
theorem of Calculus we find that (without any rigorous verification)

u(x, t+∆t) ´ u(x, t) = ´

ż t+∆t

t

B

Bx
f(x, t1) dt1 +

ż t+∆t

t

q(x, t1) dt1 .

Similarly, dividing both sides of the equality above through ∆t and then passing to the limit
as ∆t Ñ 0, the fundamental theorem of Calculus implies that

B

B t
u(x, t) +

B

Bx
f(x, t) = q(x, t) .

Example 3.1 (Traffic flows). Consider the traffic on the highway (parameterized by R).
Let u denote the car density (given in the number of vehicles per unit length). Then the
flux f is a function of u with the property that

(a) f(u) = 0 if u = 0 or u ą L,

(b) f 1(u) ą 0 if u P (0, umax), and f 1(u) ă 0 if u P (umax, L).

If f is differentiable, and f 1(u) = c(u). Then the equation of continuity reads

ut(x, t) + c(u(x, t))ux(x, t) = q(x, t) @x P R , t P R

which can be abbreviated as

ut + c(u)ux = q in R ˆ R .

To complete the model, an initial condition

u(x, 0) = u0(x) @x P R (or simply u = u0 on R ˆ tt = 0u)



has to be imposed.
When the domain of interest (for example, the highway) has finite length, we can pa-

rameterize it as [0, L]; however, to complete the model we also have to impose the boundary
condition which tells us what happened to u at the start and end of the highway. The
boundary condition for 1-d conservation laws are usually given by one of the following three
types:

1. u(0, t) = uL and u(L, t) = uR which says that the boundary value of u is prescribed
(and can be time-dependent if uL or uR are time dependent).

2. ux(0, t) = 0 and u(L, t) = 0 which says that the derivative of u on the boundary is
zero.

3. Mixed boundary condition: on one end u is given and on the other end ux is given.

3.1.2 The 1-dimensional heat equations

Consider the heat distribution on a rod of length L: Parameterize the rod by [0, L], and
let t be the time variable. Let ρ(x), s(x), κ(x) denote the density, specific heat, and the
thermal conductivity of the rod at position x P (0, L), respectively, and ϑ(x, t) denote the
temperature at position x and time t. For 0 ă x ă L, and ∆x,∆t ! 1,
ż x+∆x

x

ρ(y)s(y)
[
ϑ(y, t+∆t) ´ ϑ(y, t)

]
dy =

ż t+∆t

t

[
κ(x+∆x)ϑx(x+∆x, t1) ´ κ(x)ϑx(x, t

1)
]
dt1,

where the left-hand side denotes the change of the total heat in the small section (x, x+∆x),
and the right-hand side denotes the heat flows from outside. If there is a heat source Q,
then the equation above can be modified as

ż x+∆x

x

ρ(y)s(y)
[
ϑ(y, t+∆t) ´ ϑ(y, t)

]
dy

=

ż t+∆t

t

[
κ(x+∆x)ϑx(x+∆x, t1) ´ κ(x)ϑx(x, t

1)
]
dt1 +

ż t+∆t

t

ż x+∆x

x

Q(y, t1) dydt1 .

Dividing both sides by ∆t and passing to the limit as ∆t Ñ 0, by the Fundamental Theorem
of Calculus (assuming that all the functions appearing in the equation above are smooth
enough) we obtain that
ż x+∆x

x

ρ(y)s(y)ϑt(y, t) dy =
[
κ(x+∆x)ϑx(x+∆x, t) ´ κ(x)ϑx(x, t)

]
+

ż x+∆x

x

Q(y, t) dy .

Dividing both sides of the equation above by ∆x and then passing to the limit to ∆x Ñ 0,
we find that

ρ(x)s(x)ϑt(x, t) =
[
κ(x)ϑx(x, t)

]
x
+Q(x, t) 0 ă x ă L , t ą 0 . (3.1)



Assuming uniform rod; that is, ρ, s, κ are constant, then (3.1) reduces to that

ϑt(x, t) = α2ϑxx(x, t) + q(x, t) , 0 ă x ă L , t ą 0 , (3.2a)

where α2 =
κ

ρs
is called the thermal diffusivity.

To determine the state of the temperature, we need to impose that initial condition

ϑ(x, 0) = ϑ0(x) 0 ă x ă L (3.2b)

and a boundary condition.

(a) Temperature on the end-points of the rod is fixed: ϑ(0, t) = T1 and ϑ(L, t) = T2.

(b) Insulation on the end-points of the rod: ϑx(0, t) = ϑx(L, t) = 0.

(c) Mixed boundary conditions: ϑ(0, t) = T1 and ϑx(L, t) = 0, or ϑ(L, t) = T2 and
ϑx(0, t) = 0.

3.1.3 The 1-dimensional wave equations

1. From Hooke’s law:

k k

m m m

u(x) u(x + h)u(x − h)

imagine an array of little weights of mass m interconnected with massless springs of
length h, and the springs have a stiffness of k (see the figure). If u(x) measures the
distance from the equilibrium of the mass situated at x, then the forces exerted on
the mass m at the location x are

FNewton = ma = m
B 2u

B t2
(x, t)

FHooke = k
[
u(x+ h, t) ´ u(x, t)

]
´ k

[
u(x, t) ´ u(x ´ h, t)

]
= k

[
u(x+ h, t) ´ 2u(x, t) + u(x ´ h, t)

]
.

If the array of weights consists ofN weights spaced evenly over the length L = (N+1)h

of total mass M = Nm, and the total stiffness of the array K = k/N , then

B 2u

B t2
(x, t) =

N

N + 1

KL2

M

u(x+ h, t) ´ 2u(x, t) + u(x ´ h, t)

h2
.

Taking the limit N Ñ 8, h Ñ 0 (and assuming smoothness) we obtain

utt(x, t) = c2uxx(x, t) . (3.3)



2. Equation of vibrating string: let u(x, t) measure the distance of a string from its
equilibrium, and T (x, t) denote the tension of the string at position x and time t.

α

T1

T2

β

x x + h

String

u(x) u(x + h)

Assuming only motion in the vertical direction, the horizontal component of tensions
T1 = T (x, t) and T2 = T (x+ h, t) have to be the same; thus

T1 cosα = T2 cos β . (3.4)

Noting that

cosα =
1

secα =
1

?
1 + tan2 α

=
1

a

1 + ux(x, t)2
,

cos β =
1

secβ =
1

a

1 + tan2 β
=

1
a

1 + ux(x+ h, t)2
,

identity (3.4) implies that the function T (x, t)
a

1 + ux(x, t)2
is constant in x (but not nec-

essary in t). Denote this constant as τ(t). Then by the fact that the difference of
the vertical component of T1 and T2 induces the motion in the vertical direction, we
obtain that

m
B 2u

B t2
(x+ θh, t) = T2 sin β ´ T1 sinα = (T2 cos β) tan β ´ (T1 cosα) tanα

= τ(t)
[
ux(x+ h, t) ´ ux(x, t)

]
,

here we use B 2u

B t2
(x+ θh, t), where 0 ă θ ă 1, to denote the average acceleration of the

segment from x to x+ h. If µ is the density of the string, then m = µh; hence

µ
B 2u

B t2
(x, t) = τ(t)

ux(x+ h, t) ´ ux(x, t)

h
.

Passing to the limit as h Ñ 0, we obtain

µutt(x, t) = τ(t)uxx(x, t) . (3.5)

If there is an external forcing f acting on the string, then (3.5) becomes

µutt(x, t) = τ(t)uxx(x, t) + f(x, t) . (3.6)

If τ is constant in t (which is a reasonable assumption if the vibration of the string is
very small and uniform), then (3.6) reduces to

utt(x, t) = c2uxx(x, t) +
1

µ
f(x, t) . (3.7)



Initial conditions:
"

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)
, where φ and ψ are given functions.

Boundary conditions:

(a) Vibration string with fixed ends: u(0, t) = u(L, t) = 0 .

(b) Vibration string with free ends: ux(0, t) = ux(L, t) = 0.

(c) Mixed boundary conditions: u(0, t) = ux(L, t) = 0 or u(L, t) = ux(0, t) = 0.

3.2 Models with Several Spatial Variables
3.2.1 The Divergence Theorem
‚ The Surface Integrals

Definition 3.2. A subset Σ Ď R3 is called a surface if for each p P Σ, there exist an open
neighborhood U Ď Σ of p (U is the intersection of Σ and some open balls in R3), an open
set V Ď R2, and a continuous map φ : U Ñ V such that φ : U Ñ V is one-to-one, onto, and
its inverse ψ = φ´1 is also continuous. Such a pair tU , φu is called a coordinate chart (or
simply chart) at p, and tV , ψu is called a (local) parametrization at p.

Remark 3.3. In some literatures the surface is defined in the following equivalent but
reversed way: A subset Σ Ď R3 is a surface if for each p P Σ, there exists a neighborhood
U Ď R3 of p and a map ψ : V Ñ U XΣ of an open set V Ď R2 onto U XΣ Ď R3 such that ψ is
a homeomorphism; that is, ψ has an inverse φ = ψ´1 : U XΣ Ñ V which is continuous. The
mapping ψ is called a parametrization or a system of (local) coordinates in (a neighborhood
of) p.

Definition 3.4 (Regular surfaces). A surface Σ Ď R3 is said to be regular if for each p P Σ,
there exists a differentiable local parametrization tV , ψu of Σ at p such that ψ,1 (ψ´1(p)) and
ψ,2 (ψ´1(p)) are linearly independent, where

ψ,1
(
ψ´1(p)

)
=

B

Bu

ˇ

ˇ

ˇ

(u,v)=(q1,q2)=ψ´1(p)
ψ and ψ,2

(
ψ´1(p)

)
=

B

Bv

ˇ

ˇ

ˇ

(u,v)=(q1,q2)=ψ´1(p)
ψ

denote, respectively, the first partial derivative of ψ with respect to its first and second
variable at point ψ´1(p). The span of the two vectors ψ,1

(
ψ´1(p)

)
and ψ,2

(
ψ´1(p)

)
is

called the tangent plane of Σ at p, and is denoted by TpΣ.

Remark 3.5. A vector-valued function ψ : V Ñ R3 is differentiable if each component of
ψ is differentiable, and the derivative of ψ, denoted by Dψ, is defined by

[
Dψ(q)

]
=


Bψ1

Bu
(q)

Bψ1

Bv
(q)

Bψ2

Bu
(q)

Bψ2

Bv
(q)

Bψ3

Bu
(q)

Bψ3

Bv
(q)

 .



Therefore, Σ is regular if for each p there exists a local parametrization tV , ψu at p such
that

[
Dψ

]
has full rank at ψ´1(p) (or equivalently,

[
Dψ

]
is injective at ψ´1(p)).

In the following, we always assume that the matrix
[
Dψ(q)

]
has full rank for all

q P V if tV , ψu is a local parametrization of a regular surface Σ Ď R3.

Remark 3.6. Let p P Σ and q = ψ´1(p). SinceDψ(q) is injective, each v P TpΣ corresponds
a unique vector (a, b) P R2 such that v = aψ,1 (q) + bψ,2 (q). This vector (a, b) P R2 satisfies
[v] =

[
Dψ(q)

]
[a, b]T, and can be computed by[

a
b

]
=

([
Dψ(q)

]T[
Dψ(q)

])´1[
Dψ(q)

]T
[v] .

Example 3.7. Let S2 =
␣

(x, y, z) P R3
ˇ

ˇx2 + y2 + z2 = 1
(

be the unit sphere in R3.
If p = (x0, y0, z0) P S2, then either x0, y0 or z0 is non-zero. Suppose that z0 ‰ 0. Let
r = 1 ´

a

x20 + y20 ą 0. Define

ψ(x, y) =

# (
x, y,

a

1 ´ x2 ´ y2
)

if z0 ą 0 ,(
x, y,´

a

1 ´ x2 ´ y2
)

if z0 ă 0 ,

V = B
(
(x0, y0), r

)
, and U = ψ(V). Then ψ : V Ñ U is a bijection. Let φ = ψ´1. Then

tU , φu is a coordinate chart at p; thus S2 is a surface.
There exists another coordinate chart. Let U1 = S2z(0, 0,´1) and U2 = S2z(0, 0, 1).

Define the map φ1 : U1 Ñ R2 by that φ1(p) is the unique point on R2 such that (0, 0,´1),
φ1(p) and (x, y, 0) are on the same straight line. Similarly, define φ2 : U2 Ñ R2 by that φ2(p)

is the unique point on R2 such that (0, 0, 1), φ2(p) and (x, y, 0) are on the same straight
line. It is easy to check that if p P S2, then either tU1, φ1u or tU2, φ2u is a coordinate chart
at p.

A third kind of coordinate chart is given as follows. Let U = (0, 2π) ˆ (0, π), and define

ψ(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ).

Then ψ : U Ñ S2zt(x, 0, z) | 0 ď x ď 1, x2 + z2 = 1u is a continuous bijection with a contin-
uous inverse. We note that for any U = (θ0, θ0 + 2π) ˆ (ϕ0, ϕ0 + π), ψ is a homeomorphism
between U and an open subset of S2.

Using one of the three parametrizations above, we find that ψ,1 and ψ,2 must be linearly
independent; thus we find that S2 is a regular surface.

‚‚ The metric tensor and the first fundamental form

Definition 3.8 (Metric). Let Σ Ď R3 be a regular surface. The metric tensor associated
with the local parametrization tV , ψu (at some point p P Σ) is the matrix g = [gαβ]2ˆ2 given
by

gαβ = ψ,α ¨ψ,β =
3
ÿ

i=1

Bψi

Byα

Bψi

Byβ
in V

or equivalently, g = [Dψ]T[Dψ].



Proposition 3.9. Let Σ Ď R3 be a regular surface, and g = [gαβ]2ˆ2 be the metric tensor
associated with the local parametrization tV , ψu (at p P Σ). Then the metric tensor g is
positive definite; that is,

2
ÿ

α,β=1

gαβv
αvβ ą 0 @ v =

2
ÿ

γ=1

vγ
Bψ

Byγ
‰ 0 .

Proof. Since Dψ has full rank on V , every tangent vector v can be expressed as the linear

combination of
!

Bψ

By1
,

Bψ

By2

)

. Write v =
2
ř

γ=1

vγ
Bψ

Byγ
. Then if v ‰ 0,

0 ă }v}2R3 =
3
ÿ

i=1

2
ÿ

α,β=1

vα
Bψi

Byα
vβ

Bψi

Bψβ
=

2
ÿ

α,β=1

gαβv
αvβ . ˝

Definition 3.10 (The first fundamental form). Let Σ Ď R3 be a regular surface, and
g = [gαβ]2ˆ2 be the metric tensor associated with the local parametrization tV , ψu (at
p P Σ). The first fundamental form associated with the local parametrization tV , ψu (at
p P Σ) is the scalar function g = det(g).

Theorem 3.11. Let Σ Ď R3 be a regular surface, and tV , ψu be a local parametrization at
p P Σ. Then

?g = }ψ,1 ˆψ,2 }R3 . (3.8)

Proof. Using the permutation symbol (given in the next remark) and Kronecker’s delta, we
have

}ψ,1 ˆψ,2 }2R3 =
3
ÿ

i=1

( 3
ÿ

j,k=1

εijkψ
j,1 ψ

k,2
)( 3

ÿ

r,s=1

εirsψ
r,1 ψ

s,2
)

=
3
ÿ

j,k,r,s=1

[( 3
ÿ

i=1

εijkεirs
)
ψj,1 ψ

k,2 ψ
r,1 ψ

s,2

]
=

3
ÿ

j,k,r,s=1

(
δjrδks ´ δjsδkr

)
ψj,1 ψ

k,2 ψ
r,1 ψ

s,2 ,

where we use the identity
3
ÿ

i=1

εijkεirs = δjrδks ´ δjsδkr (3.9)

to conclude the last equality. Therefore,

}ψ,1 ˆψ,2 }2R3 =
3
ÿ

j,k=1

(
ψj,1 ψ

k,2 ψ
j,1 ψ

k,2 ´ψj,1 ψ
k,2 ψ

j,2 ψ
k,1

)
= g11g22 ´ g12g21 = det(g) = g .

Finally, (3.8) is concluded from the fact that g is positive definite. ˝

Remark 3.12. A sequence (k1, k2, ¨ ¨ ¨ , kn) of positive integers not exceeding n, with the
property that no two of the ki are equal, is called a permutation of degree n. The



collection of all permutations of degree n is denoted by P(n). For 1 ď i, j ď n and i ‰ j, the
operator τ(i,j) interchange the i-th and j-th elements of a sequence in P(n). For example, if
n = 3, the permutation (3, 1, 2) can be obtained by interchanging pairs of (1, 2, 3) twice:

(1, 2, 3)
τ(1,3)
ÝÑ (3, 2, 1)

τ(2,3)
ÝÑ (3, 1, 2);

thus (3, 1, 2) is called an even permutation of (1, 2, 3). On the other hand, (1, 3, 2) is obtained
by interchanging pairs of (1, 2, 3) once:

(1, 2, 3)
τ(2,3)
ÝÑ (1, 3, 2);

thus (1, 3, 2) is an odd permutation of (1, 2, 3).
For n = 3, the even and odd permutations can also be viewed as the orientation of the

permutation (k1, k2, k3). To be more precise, if (1, 2, 3) is arranged in a counter-clockwise
orientation (see Figure 3.1), then an even permutation of degree 3 is a permutation in the
counter-clockwise orientation, while an odd permutation of degree 3 is a permutation in the
clockwise orientation. From figure 3.1, it is easy to see that (3, 1, 2) is an even permutation
of degree 3 and (1, 3, 2) is an odd permutation of degree 3.

Odd permutationsEven permutations

1

2 3

1

2 3

Figure 3.1: Even and odd permutations of degree 3

The permutation symbol is a function on P(n) defined by

εk1k2¨¨¨kn =

"

1 if (k1, k2, ¨ ¨ ¨ , kn) is an even permutation of (1, 2, ¨ ¨ ¨ , n) ,

´1 if (k1, k2, ¨ ¨ ¨ , kn) is an odd permutation of (1, 2, ¨ ¨ ¨ , n) .

Example 3.13. Let Σ be the sphere centered at the origin with radius R. Consider the local
parametrization ψ(θ, ϕ) = (R cos θ sinϕ,R sin θ sinϕ,R cosϕ) with (θ, ϕ) P V ” (0, 2π) ˆ

(0, π). Then

ψ,1 (θ, ϕ) ” ψθ(θ, ϕ) = (´R sin θ sinϕ,R cos θ sinϕ, 0) ,
ψ,2 (θ, ϕ) ” ψϕ(θ, ϕ) = (R cos θ cosϕ,R sin θ cosϕ,´R sinϕ) ;

thus the metric tensor and the first fundamental form associated with the parametrization
tV , ψu are

g(θ, ϕ) =
[
Dψ

]T[
Dψ

]
(θ, ϕ) =

[
R2 sin2 ϕ 0

0 R2

]
and g = det(g) = R4 sin2 ϕ.



‚‚ What does the first fundamental form do for us?

Let p = ψ(u0, v0) be a point in Σ. Then the surface area of the region ψ
(
[u0, u0 + h] ˆ

[v0, v0 + k]
)
, where h, k are very small, can be approximated by the sum of the area of two

triangles, one with vertices ψ(u0, v0), ψ(u0+h, v0), ψ(u0, v0+k) and the other with vertices
ψ(u0 + h, v0), ψ(u0, v0 + k), ψ(u0 + h, v0 + k).

ψ(u0, v0)

ψ(u0, v0 + k)

ψ(u0 + h, v0)

ψ(u0 + h, v0 + k)

Here we remark that the approximation of the surface area of a regular C 1-surface obeys

lim
(h,k)Ñ(0,0)

the surface area of ψ
(
[u0, u0 + h] ˆ [v0, v0 + k]

)
the sum of area of the two triangles given in the context = 1 . (3.10)

The area of the triangle with vertices ψ(u0, v0), ψ(u0 + h, v0), ψ(u0, v0 + k) is

A1 =
1

2

›

›

(
ψ(u0 + h, v0) ´ ψ(u0, v0)

)
ˆ
(
ψ(u0, v0 + k) ´ ψ(u0, v0)

)›
›

R3 .

By the mean value theorem, for each component j P t1, 2, 3u, we have

ψj(u0 + h, v0) ´ ψj(u0, v0) = ψ,1 (u0 + θj1h, v0)h ,

ψj(u0, v0 + k) ´ ψj(u0, v0) = ψ,2 (u0, v0 + θj2k)k

for some θji P (0, 1); thus if ψ is of class C 1,

ψ(u0 + h, v0) ´ ψ(u0, v0) = ψ,1 (u0, v0)h+ E1(u0, v0;h)h ,

ψ(u0, v0 + k) ´ ψ(u0, v0) = ψ,2 (u0, v0)k + E2(u0, v0; k)k ,

where E1 and E2 are bounded vector-valued functions satisfying that lim
hÑ0

E1(u0, v0;h) = 0

and lim
kÑ0

E2(u0, v0; k) = 0. Therefore,

lim
(h,k)Ñ(0,0)

(
ψ(u0+h, v0)´ψ(u0, v0)

)
ˆ
(
ψ(u0, v0+k)´ψ(u0, v0)

)
hk

´ψ,1 (u0, v0)ˆψ,2 (u0, v0) = 0 .

Since ?g = }ψ,1 ˆψ,2 }R3 , we have

A1 =
1

2

a

g(u0, v0)hk + f1(u0, v0;h, k)hk

for some function f1 which converges to 0 as (h, k) Ñ (0, 0) and is bounded since ∇ψ
is bounded. Similarly, the area of the triangle with vertices ψ(u0 + h, v0), ψ(u0, v0 + k),
ψ(u0 + h, v0 + k) is

A2 =
1

2

a

g(u0, v0)hk + f2(u0, v0;h, k)hk .



Taking (3.10) into account, we find that

the surface area of ψ
(
[u0, u0 + h] ˆ [v0, v0 + k]

)
=
a

g(u0, v0)hk + f(u0, v0;h, k)hk (3.11)

for some bounded function f(¨, ¨; ¨, ¨) which converges to 0 as the last two variables h, k
approach 0.

Now consider the surface area of ψ([a, a+ L] ˆ [b, b+W ]). Let ε ą 0 be given. Choose
N ą 0 such that

ˇ

ˇf(u, v;h, k)
ˇ

ˇ ă
ε

2LW
@ 0 ă h ă

L

N
, 0 ă k ă

W

N
and (u, v) P [a, a+ L] ˆ [b, b+W ] ,

and
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

c

g
(
a+

i´ 1

n
L, b+

j ´ 1

m
M

)L
n

W

m
´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ
ă
ε

2
if n,m ě N .

Then for n,m ě N , with (h, k) denoting
(L
n
,
W

m

)
(3.11) implies that

ˇ

ˇ

ˇ
the surface area of ψ([a, a+ L] ˆ [b, b+W ]) ´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

the surface area of ψ([a+ (i´ 1)h, a+ ih] ˆ [b+ (j ´ 1)k, b+ jk])

´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

b

g
(
a+ (i´ 1)h, b+ (j ´ 1)k

)
hk ´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

f(a+ (i´ 1)h, b+ (j ´ 1)k;h, k)hk
ˇ

ˇ

ˇ

ă
ε

2
+

ε

2LW

m
ÿ

j=1

n
ÿ

i=1

hk = ε .

The discussion above verifies the following

Theorem 3.14. Let Σ Ď R3 be a regular C 1-surface, tV , ψu be a local C 1-parametrization
of Σ at p, and g be the first fundamental form associated with tV , ψu. Then

the surface area of ψ(V) =
ż

V

?g dA .

Example 3.15. Recall from Example 3.13 that the first fundamental form g of the parametriza-
tion tV , ψu of the 2-sphere centered at the origin with radius R, where

ψ(θ, ϕ) = (R cos θ sinϕ,R sin θ sinϕ,R cosϕ)

and V = (0, 2π) ˆ (0, π), is given by g(θ, ϕ) = R4 sin2 ϕ. Therefore,

the surface area of ψ
(
(0, 2π) ˆ (0, π)

)
=

ż

(0,2π)ˆ(0,π)

R2 sinϕ d(θ, ϕ)

= R2

ż 2π

0

ż π

0

sinϕ dϕdθ = 4πR2 .



Since the difference of the 2-sphere and ψ
(
(0, 2π) ˆ (0, π)

)
has zero area, we find that the

surface area of the 2-sphere with radius R is 4πR2.

Example 3.16. Let Σ Ď R3 be the upper half sphere; that is, Σ =
␣

(x, y, z) P R3
ˇ

ˇx2+ y2+

z2 = R2, z ą 0
(

, and tV , ψu be a global parametrization of Σ given by

ψ(u, v) = (u, v,
?
R2 ´ u2 ´ v2) , (u, v) P V =

␣

(u, v) P R2
ˇ

ˇu2 + v2 ď R2
(

.

To find the surface area using this parametrization, we first compute tψ,1 , ψ,2 u as follows:

ψ,1 (u, v) =
(
1, 0,

´u
?
R2 ´ u2 ´ v2

)
and ψ,2 (u, v) =

(
0, 1,

´v
?
R2 ´ u2 ´ v2

)
,

thus the first fundamental form associated with the parametrization tV , ψu is

g(u, v) = }ψ,1 (u, v) ˆ ψ,2 (u, v)}
2
R3 =

›

›

›

( u
?
R2 ´ u2 ´ v2

,
v

?
R2 ´ u2 ´ v2

, 1
)›
›

›

2

R3

=
R2

R2 ´ u2 ´ v2
.

Therefore, the surface area of Σ is
ż

Σ

dS =

ż

V

R
?
R2 ´ u2 ´ v2

dA =

ż R

´R

ż

?
R2´u2

´
?
R2´u2

R
?
R2 ´ u2 ´ v2

dvdu

= R

ż R

´R

arcsin v
?
R2 ´ u2

ˇ

ˇ

ˇ

v=
?
R2´u2

v=´
?
R2´u2

du = R

ż R

´R

π du = 2πR2 .

Note the the computation above also shows that the surface area of the sphere in R3 with
radius R is 4πR2 which is the same as what we have conclude in Example 3.15.

Remark 3.17. The example above provides one specific way of evaluating the surface
integrals: if the surface Σ is in fact a subset of the graph of a function f : D Ď R2 Ñ R;
that is, Σ Ď

␣

x, y, f(x, y))
ˇ

ˇ (x, y) P D
(

, then Σ has a global parametrization

ψ(x, y) =
(
x, y, f(x, y)

)
, (x, y) P V ,

where V is the projection of Σ onto the xy-plane along the z-direction. Then the first
fundamental form associated to this parametrization is

g(x, y) = }ψ,1 (x, y) ˆ ψ,2 (x, y)}
2
R3 = 1 +

ˇ

ˇ

ˇ

Bf

Bx
(x, y)

ˇ

ˇ

ˇ

2

+
ˇ

ˇ

ˇ

Bf

By
(x, y)

ˇ

ˇ

ˇ

2

;

thus the surface area of Σ is
ż

Σ

dS =

ż

V

c

1 +
ˇ

ˇ

ˇ

Bf

Bx
(x, y)

ˇ

ˇ

ˇ

2

+
ˇ

ˇ

ˇ

Bf

By
(x, y)

ˇ

ˇ

ˇ

2

d(x, y) .

Example 3.18. Let C be a smooth curve parameterized by

r(t) = (cos t sin t, sin t sin t, cos t) , t P

[
´
π

2
,
π

2

]
.



The clearly C is on the unit sphere S2 since }r(t)}R3 = 1 for all t P

[
´
π

2
,
π

2

]
. Since C is a

closed curve, C divides S2 into two parts. Let Σ denote the part with smaller area (see the
following figure), and we are interested in finding the surface area of Σ.

Solution:

(a) Let
⇀

F (x, y, z) = (0, f(x, y, z), 0). By the divergence theorem,

∫∫

Σ

f(x, y, z)n2(x, y, z)dS =

∫∫

Σ

⇀

F (x, y, z)· ⇀
n (x, y, z)dS =

∫∫∫

D

div
⇀

F (x, y, z)dV

=

∫∫∫

D

∂f

∂y
(x, y, z)dV .

(b) On the sphere x2 + y2 + z2 = 9, the outward point normal vector
⇀
n (x, y, z) = 1

3
(x, y, z).

Therefore, by (0.1) (with f(x, y, z) = 3yez in mind),

∫∫

Σ

y2ezdS =

∫∫

Σ

3yez
y

3
dS =

∫∫∫

D

∂

∂y
(3yez)dV =

∫

3

0

∫

2π

0

∫ π

0

3eρ cosφρ2 sinφdφdθdρ

= 3

∫ 3

0

∫ 2π

0

−ρeρ cosφ
∣

∣

∣

φ=π

φ=0

dθdρ

= 6π

∫ 3

0

(ρeρ − ρe−ρ)dρ

= 6π(ρ− 1)eρ
∣

∣

∣

ρ=3

ρ=0

− 6π(−ρ− 1)e−ρ
∣

∣

∣

ρ=3

ρ=0

= 12π(e3 + 2e−3) .

Problem 5. Let C be a smooth curve parametrized by

⇀
r (t) = (cos t sin t, sin t sin t, cos t) , −π

2
≤ t ≤ π

2
.

x
y

z

1. (10%) Show that the corresponding curve of
⇀
r (t) on θφ-plane consists of two line segments L1

and L2 given by

L1 =
{

(θ, φ)
∣

∣

∣
θ = φ , 0 ≤ φ ≤ π

2

}

, L2 =
{

(θ, φ)
∣

∣

∣
θ = π − φ , 0 ≤ φ ≤ π

2

}

.

2. (10%) Plot L1 and L2 on the θφ-plane. The curve C divides the unit sphere into two parts,

and let Σ be the part with smaller area. Identify the corresponding region of Σ on θφ-plane.

3. (15%) Find the surface area of Σ.

To compute the surface area of Σ, we need to find a way to parameterize Σ. Naturally we
try to parameterize Σ using the spherical coordinate. In other words, let R = (0, 2π)ˆ (0, π)

and ψ : R Ñ R3 be defined by

ψ(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ) ,

and we would like to find a region D Ď R such that ψ(D) = Σ.
Suppose that γ(t) =

(
θ(t), φ(t)

)
, t P

[
´
π

2
,
π

2

]
, is a curve in R such that (ψ ˝γ)(t) = r(t).

Then for t P
[
0,
π

2

]
, the identity cos t = cosϕ(t) implies that ϕ(t) = t; thus the identities

cos t sin t = cos θ(t) sinϕ(t) and sin t sin t = sin θ(t) sinϕ(t) further imply that θ(t) = t.
On the other hand, for t P

[
´
π

2
, 0
]
, the identity cos t = cosϕ(t), where ϕ(t) P (0, π),

implies that ϕ(t) = ´t; thus the identities cos t sin t = cos θ(t) sinϕ(t) and sin t sin t =

sin θ(t) sinϕ(t) further imply that θ(t) = π + t.

θ

ϕ

R

D = ψ´1(Σ)
θ = ϕ

θ + ϕ = π

Since the first fundamental form associate with tR, ψu is the first fundamental form
associated with tR, ψu is

g(u, v) =
›

›(ψθ ˆ ψϕ)(u, v)
›

›

2

R3

=
›

›(´ sin θ sinϕ, cos θ sinϕ, 0) ˆ (cos θ cosϕ, sin θ cosϕ,´ sinϕ)
›

›

2

R3

=
›

›(´ cos θ sin2 ϕ,´ sin θ sin2 ϕ,´(sin2 θ + cos2 θ) sinϕ cosϕ)
›

›

2

R3

= (cos2 θ + sin2 θ) sin4 ϕ+ sin2 ϕ cos2 ϕ = sin2 ϕ ,



the area of the desired surface can be computed by
ż

Σ

dS =

ż

ψ´1(Σ)

?g dA =

ż π
2

0

ż π´ϕ

ϕ

sinϕ dθdϕ =

ż π
2

0

(π ´ 2ϕ) sinϕ dϕ

=
(

´ π cosϕ+ 2ϕ cosϕ ´ 2 sinϕ)
ˇ

ˇ

ˇ

ϕ=π
2

ϕ=0
= π ´ 2 .

Another way to parameterize Σ is to view Σ as the graph of function z =
a

1 ´ x2 ´ y2

over D, where D is the projection of Σ along z-axis onto xy-plane. We note that the
boundary of D can be parameterized by

rr(t) = (cos t sin t, sin t sin t) , t P

[
´
π

2
,
π

2

]
.

Let (x, y) P BD. Then x2+ y2 = y; thus Σ can also be parameterized by ψ : D Ñ R3, where

ψ(x, y) =
(
x, y,

a

1 ´ x2 ´ y2
)

and D =
␣

(x, y)
ˇ

ˇx2 + y2 ď y
(

.

Therefore, with f denoting the function f(x, y) =
a

1 ´ x2 ´ y2, Remark 3.17 implies that
the surface area of Σ can be computed by

ż

D

b

1 + f 2
x + f 2

y dA =

ż 1

0

ż

?
y´y2

´
?
y´y2

1
a

1 ´ x2 ´ y2
dxdy

=

ż 1

0

arcsin x
a

1 ´ y2

ˇ

ˇ

ˇ

x=
?
y´y2

x=´
?
y´y2

dy = 2

ż 1

0

arcsin
?
y

?
1 + y

dy ;

thus making a change of variable y = tan2 θ we conclude that

the surface area of Σ = 2

ż π
4

0

arcsin tan θ
sec θ d(tan

2 θ) = 2

ż π
4

0

θ d
(
tan2 θ)

= 2
[
θ tan2 θ

ˇ

ˇ

ˇ

θ=π
4

θ=0
´

ż π
4

0

tan2 θdθ
]

= 2
[π
4

´

ż π
4

0

(sec2 θ ´ 1) dθ
]
= 2

[π
4

´ (tan θ ´ θ)
ˇ

ˇ

ˇ

θ=π
4

θ=0

]
= 2

[π
4

´

(
1 ´

π

4

)]
= π ´ 2 .

Let Σ Ď R3 be a regular surface, and tV , ψu be a parametrization of Σ such that
ψ(V) = Σ. If f : Σ Ñ R is a bounded continuous function, the surface integral of f over Σ,
denoted by

ż

Σ
f dS, is defined by

ż

Σ

f dS =

ż

V
(f ˝ ψ)

?g dA . (3.12)

In particular, if f ” 1, the number
ż

Σ
dS ”

ż

Σ
1 dS is the surface area of Σ.

Since the surface integrals defined by (3.12) seems to depend on a given parametrization,
before proceeding we show that the surface integral is indeed independent of the choice of the



parameterizations. Suppose that tV1, ψ1u and tV2, ψ2u are two local C 1-parameterizations
of a regular surface Σ at p, g1, g2 denote the metric tensors associated with the parameter-
izations tV1, ψ1u, tV2, ψ2u, respectively, and g1 = det(g1), g2 = det(g2) are corresponding
first fundamental forms. Let Ψ = ψ´1

2 ˝ ψ1. Then the change of variables formula implies
that

ż

V2

(f ˝ ψ2)
?g2 dA =

ż

V1

(f ˝ ψ2 ˝ Ψ)
(?g2 ˝ Ψ

)
|JΨ| dA =

ż

V1

(f ˝ ψ1)
(?g2 ˝ Ψ

)
|JΨ| dA ,

where JΨ is the Jacobian of the map Ψ. By the chain rule, we find that[
DΨ

]T[
(Dψ2) ˝ Ψ

]T[
(Dψ2) ˝ Ψ

][
DΨ

]
=

[
Dψ1

]T[
Dψ1

]
;

thus by the fact that g1 = det
(
[Dψ1]

T[Dψ1]
)
and g2 = det

(
[Dψ2]

T[Dψ2]
)
, we obtain that

det
(
[DΨ]

)2
(g2 ˝ Ψ) = g1 .

Since JΨ = det
(
[DΨ]

)
, the identity above implies that |JΨ|(

?g2 ˝Ψ) =
?g1, so we conclude

that
ż

V1

(f ˝ ψ1)
?g1 dA =

ż

V2

(f ˝ ψ2)
?g2 dA . (3.13)

Therefore, the surface integral of f over Σ is independent of the choice of parameterizations
of Σ. In particular, the surface area of a regular C 1-surface which can be parameterized by
a global parametrization is also independent of the choice of parameterizations.

Next, we study the surface area of general regular surfaces that cannot be parameterized
using a single pair tV , ψu. Let Σ Ď R3 be a regular surface, and tVi, ψiuiPI be a collection
of local parameterizations satisfying that for each p P Σ there exists i P I such that tVi, ψiu
is a local parametrization of Σ at p. If there exists a countable collection of non-negative
functions tζjujPJ defined on Σ such that

1. For each j P J , supp(ζj) ” the closure of
␣

x P Σ
ˇ

ˇ ζj(x) ‰ 0
(

Ď Vi for some i P I;

2.
ř

jPJ ζj(x) = 1 for all x P Σ,

then intuitively we can compute the surface area by
ż

Σ

dS =
ÿ

jPJ

ż

Σ

ζj dS , (3.14)

where the surface integral of ζj over Σ is defined by (3.12) since supp(ζj) Ď ψ(Vi) and
ζj = 0 outside supp(ζj). In other words, each term on the right-hand side of (3.14) can be
evaluated by

ż

Σ

ζj dS =

ż

Vi
(ζj ˝ ψi)

?gi dS .

if supp(ζj) Ď ψi(Vi). Similarly, for a bounded continuous function f defined on Σ, the
surface integral of f over Σ can be defined by

ż

Σ

f dS =
ÿ

jPJ

ż

Σ

(ζjf) dS =
ÿ

jPJ

ÿ

choose one i such that
supp(ζj) Ď ψi(Vi)

ż

Vi
(ζjf) ˝ ψi

?gi dS . (3.15)



Remark 3.19. Defining the surface integrals of a function as above, a question arises natu-
rally: is the surface integral given by (3.15) independent of the choice of the parametrization
and the partition-of-unity? In other words, if a regular C k-surface Σ admits two collections
of local parametrization tUi, φiuiPI and tVj, ψjujPJ , and tζiuiPI and tλjujPJ are C k-partition-
of-unity subordinate to tUiuiPI and tVjujPJ , respectively. Is it true that

ÿ

iPI

ÿ

choose one i such that
supp(ζj) Ď φi(Ui)

ż

Ui
(ζif) ˝ φi

?gi dS =
ÿ

jPJ

ÿ

choose one j such that
supp(λk) Ď ψj(Vj)

ż

Vj
(λjf) ˝ ψj

?
gj dS ,

where gi and gj are the first fundamental form associated with the parametrization tUi, φiu
and tVj, ψju, respectively.

The answer to the question above is affirmative, and the surface integral given by (3.15)
is indeed independent of the choice of parametrization of the surface and the partition-of-
unity; however, we will not prove this and only treat this as a known fact.

Now we focus on the existence of a collection of functions tζjujPJ discussed above.

Definition 3.20. A collection of subsets of Rn is said to be locally finite if for every point
x P Rn there exists r ą 0 such that B(x, r), the ball centered at x with radius r, intersects
at most finitely many sets in this collection.

Definition 3.21 (Partition of Unity). Let A Ď Rn be a subset. A collection of functions
tζjujPJ is said to be a partition-of-unity of A if

1. 0 ď ζj ď 1 for all j P J .

2. The collection of sets
␣

supp(ζj)
(

jPJ is locally finite.

3.
ř

jPJ
ζj(x) = 1 for all x P A.

Let tUjujPJ be an open cover of A; that is, Uj is open for all j P J and A Ď
Ť

jPJ Uj.
A partition-of-unity tζjujPJ of A is said to be subordinate to tUjujPJ (or tUjujPJ has a
subordinate partition-of-unity of A) if supp(ζj) Ď Uj for all j P J .

We note the if tζjujPJ is a partition-of-unity of A, then the property of local finiteness
of tsupp(ζj)ujPJ ensures that for each point x P A has a neighborhood on which all but
finitely many λj’s are zero.

Lemma 3.22. Let A Ď Rn be a subset, tUiuiPI be an open cover of A, and tVjujPJ be a
collection of open sets such that each Vj is a subset of some Ui; that is, for each j P J ,
Vj Ď Ui for some i P I. If tVjujPJ has a subordinate C k-partition-of-unity of A, so has
tUiuiPI.



Proof. Let tζjujPJ be a partition-of-unity of A subordinate to tVjujPJ , and f : J Ñ I
be a map such that Vj Ď Uf(j) (we note that such f in general is not unique). Define
χi : Rn Ñ [0, 1] by

χi(x) =
ÿ

jPf´1(i)

ζj(x) . (3.16)

Then clearly supp(χi) Ď Ui and
ř

iPI
χi(x) = 1 for all x P A. Moreover, since the sum (3.16)

is a finite sum, χi is of class C k for all i P I since ζj if of class C k for all j P J . Now we
show that

␣

supp(χi)
(

iPI is locally finite. Let x P Rn be given. By the local finiteness of
␣

supp(ζj)
(

jPJ there exists r ą 0 such that #
␣

j P J
ˇ

ˇB(x, r)X supp(ζj) ‰ H
(

ă 8. By the
fact that f´1(i1) X f´1(i2) = H if i1 ‰ i2 (that is, each j P J belongs to f´1(i) for exactly
one i P I) and that

y P B(x, r) X supp(χi) ô y P B(x, r) X supp(ζj) for some j P f´1(i) ,

we must have

#
␣

i P I
ˇ

ˇB(x, r) X supp(χi) ‰ H
(

ď #
␣

j P J
ˇ

ˇB(x, r) X supp(ζj) ‰ H
(

ă 8 . ˝

Theorem 3.23. Let Σ Ď R3 be a regular C k-surface. Then every open cover of Σ has a
subordinate C k-partition-of-unity of Σ.

Proof. Let tOiuiPI be a given open cover of Σ. Let tUj, φjujPJ be a collection of C k-charts
of Σ such that tUjujPJ is a locally finite open cover of Σ and for each j P J , sUj Ď Oi for
some i P I. By Lemma 3.22, it suffices to find a C k-partition-of-unity of Σ subordinate to
tUjujPJ .

W.L.O.G., we can assume that Uj and Vj ” φ(Uj) is bounded for all j P J . Define
ψj = φ´1

j . Then tVj, ψjujPJ is a collection of local parametrization of Σ. Choose a collection
of open sets tWjujPJ such that ĎWj Ď Vj for all j P J and

␣

ψj(Wj)
(

jPJ is still an open cover

of Σ. For each j P J , let
␣

B
(j)
k

(Nj

k=1
be a collection of open balls satisfying ĎWj Ď

Nj
Ť

k=1

B
(j)
k

and cl(B(j)
k ) Ď Vj for all k P t1, ¨ ¨ ¨ , Nju. For j P J and k P t1, ¨ ¨ ¨ , Nju, with cj,k and rj,k

denoting the center and the radius of B(j)
k , respectively, let

µ(j,k)(x) =

$

&

%

exp
(

1

}x´ cj,k}2R2 ´ r2j,k

)
if x P B

(j)
k ,

0 if x R B
(j)
k ,

and then define χj : R2 Ñ R by χj(x) =
Nj
ř

k=1

µ(j,k)(x). Then χj ą 0 in ĎWj, and χj = 0

outside
Nj
Ť

k=1

B
(j)
k . Further define

λj(x) =

#

(χj ˝ φj)(x) if x P Uj ,
0 if x P U A

j .

Then λj ą 0 on ψj(Wj) which implies that
ř

jPJ
λj ą 0. Finally, we define ζj =

λj
ř

jPJ λj
.

Then tζjujPJ is a C k-partition-of-unity subordinate to the open cover tUjujPJ . ˝



Definition 3.24 (Piecewise Regular Surface). A surface Σ Ď R3 is said to be piecewise

regular if there are finite many curves C1, ¨ ¨ ¨ , Ck such that Σz
k
Ť

i=1

Ci is a disjoint union of
regular surfaces.

Definition 3.25. Let Σ Ď R3 be a piecewise regular surface such that Σ is the disjoint
union of regular surfaces Σi, where i P I for some finite index set I. For a continuous
function f : Σ Ñ R, the surface integral of f over Σ, still denoted by

ż

Σ
f dS, is defined by

ż

Σ

f dS =
ÿ

iPI

ż

Σi

f dS .

Definition 3.26. Let RΣ be the collection of piecewise regular surfaces in R3. The surface
element is a set function S : RΣ Ñ R that satisfies the following properties:

1. S (Σ) ą 0 for all Σ P RΣ.

2. If Σ is the union of finitely many regular surfaces Σ1, ¨ ¨ ¨ ,Σk that do not overlap
except at their boundaries, then

S (Σ) = S (Σ1) + ¨ ¨ ¨ + S (Σk) .

3. The value of S agrees with the area on planar surfaces; that is,

S (P) = A(P) for all planar surfaces P .

‚ The flux integral

Let Σ Ď R3 be a regular C 1-surface with a continuous normal vector field N : Σ Ñ R3, and
u : Σ Ñ R3 be a bounded continuous vector-valued function. The flux integral of u over Σ
with given orientation N is the surface integral of u ¨ N over Σ.

‚‚ Physical interpretation

Let Ω Ď R3 be an open set which stands for a fluid container and fully contains some liquid
such as water, and u : Ω Ñ R3 be a vector-field which stands for the fluid velocity; that is,
u(x) is the fluid velocity at point x P Ω. Furthermore, let Σ Ď Ω be a surface immersed in
the fluid with given orientation N, and c : Ω Ñ R be the concentration of certain material
dissolving in the liquid. Then the amount of the material carried across the surface in the
direction N by the fluid in a time period of ∆t is

∆t ¨

ż

Σ

cu ¨ N dS .

Therefore,
ż

Σ
cu ¨N dS is the instantaneous amount of the material carried across the surface

in the direction N by the fluid.



Example 3.27. Find the flux integral of the vector field F(x, y, z) = (x, y2, z) upward
through the first octant part Σ of the cylindrical surface x2 + z2 = a2, 0 ă y ă b.

x y

z

a

a

b

Fist, we parameterize Σ by

ψ(u, v) = (u, v,
?
a2 ´ u2), (u, v) P V = (0, a) ˆ (0, b) .

Since the first fundamental form g associated with tV , ψu is g = }ψ,1 ˆψ,2 }2R3 =
a2

a2 ´ u2
,

and the upward-pointing unit normal is N(x, y, z) = (
x

a
, 0,

z

a
), we have

ż

Σ

F ¨ N dS =

ż

V

1

a
(u2 + a2 ´ u2)

a
?
a2 ´ u2

d(u, v) = a2
ż

V

1
?
a2 ´ u2

d(u, v)

= a2
ż b

0

ż a

0

1
?
a2 ´ u2

dudv = a2b arcsin u
a

ˇ

ˇ

ˇ

u=a

u=0
=
πa2b

2
.

‚‚ Measurements of the flux - the divergence operator

Let Ω Ď R3 be an open set, and u = (u1, u2, u3) : Ω Ñ R3 be a C 1 vector field. Suppose that
O is a bounded open set of class C 1 such that sO Ď Ω with outward-pointing unit normal
vector field N = (N1,N2,N3). Then the flux integral of u over BO in the direction N is

ż

BO
u ¨ N dS .

Consider a special case that O = B(a, r) for some ball in R3 centered at a = (a1, a2, a3)

with radius r ą 0. We first compute
ż

BB(a,r)
u3N3 dS. Consider

ψ+(x1, x2) =
(
x1, x2, a3 +

a

r2 ´ (x1 ´ a)2 ´ (x2 ´ a2)2
)
, (x1, x2) P D(a, r) ,

ψ´(x2, x2) =
(
x1, x2, a3 ´

a

r2 ´ (x1 ´ a)2 ´ (x2 ´ a2)2
)
, (x1, x2) P D(a, r) ,

where D(a, r) is the disk in R2 given by
␣

(x1, x2) P R2
ˇ

ˇ (x1 ´ a1)
2 + (x2 ´ a2)

2 ď r2
(

. Since
BB(a, r)z

(
ψ+(D(a, r)) Y ψ´(D(a, r)) is the equator of the sphere BB(a, r) which has zero

area, we must have
ż

BB(a,r)

u3N3 dS =

ż

ψ+(D(a,r))

u3N3 dS +

ż

ψ´(D(a,r))

u3N3 dS .



Note that (N ˝ ψ˘)(x1, x2) =
1

r

(
ψ˘(x1, x2) ´ a

)
. In view of Example 3.16, we have

ż

ψ+(D(a,r))

u3N3 dS

=

ż

D(a,r)

u3(ψ+(x1, x2))

a

r2 ´ (x1 ´ a1)2 ´ (x2 ´ a2)2

r

r
a

r2 ´ (x1 ´ a1)2 ´ (x2 ´ a2)2
dA

=

ż

D(a,r)

u3(ψ+(x1, x2)) dA ,

and similarly,
ż

ψ+(D(a,r))

u3N3 dS = ´

ż

D(a,r)

u3(ψ´(x1, x2)) dA .

Therefore,
ż

BB(a,r)

u3N3 dS =

ż

D(a,r)

[
u3(ψ+(x1, x2)) ´ u3(ψ´(x1, x2))

]
dA

=

ż

D(a,r)

( ż a3+
?
r2´(x1´a1)2´(x2´a2)2

a3´
?
r2´(x1´a1)2´(x2´a2)2

Bu3

Bx3
(x1, x2, x3) dx3

)
dA

=

ż

B(a,r)

Bu3

Bx3
dx .

Similarly,
ż

BB(a,r)

u1N1 dS =

ż

B(a,r)

Bu1

Bx1
dx and

ż

BB(a,r)

u2N2 dS =

ż

B(a,r)

Bu2

Bx2
dx ;

thus we conclude that
ż

BB(a,r)

u ¨ N dS =

ż

B(a,r)

3
ÿ

i=1

Bui

Bxi
dx . (3.17)

The computation above motivates the following

Definition 3.28 (The divergence operator). Let u : Ω Ď Rn Ñ Rn be a C 1 vector field.
The divergence of u is a scalar function defined by

divu =
n
ÿ

i=1

Bui

Bxi
.

Definition 3.29. A vector field u : Ω Ď Rn Ñ Rn is called solenoidal or divergence-free if
divu = 0 in Ω.

Remark 3.30. Let Ω Ď R3 be an open set, and u : Ω Ñ R3 be a C 1 vector field. Using
(3.17), by the continuity of divu we conclude that

lim
rÑ0

1

|B(a, r)|

ż

BB(a,r)

u ¨ N dS = (divu)(a) @ a P Ω ,

where |B(a, r)| =
4πr3

3
is the volume of B(a, r). In other words, divu at a point x is the

instantaneous amount (per volume) of material (with concentration 1) carried outside an
infinitesimal ball centered at x.



‚ The divergence theorem

Theorem 3.31 (The Divergence Theorem). Let Ω Ď Rn be a bounded domain such that
BΩ is piecewise smooth, and w = (w1, ¨ ¨ ¨ , wn) P C 1(Ω) with outward pointing normal N.
Then

ż

Ω

divw dx =

ż

BΩ

w ¨ N dS .

3.2.2 Equation of continuity

Let u be the concentration of some physical quantity (u = u(x, t)) in a domain Ω Ď Rn,
and let F be the flux of the quantity; that is, F ¨ N dS is the flow rate of the quantity that
passes through an area dS in the direction N (outward pointing) normal to dS. Then

d

dt

ż

U
u dx = ´

ż

BU
F ¨ N dS +

ż

U
q dx for all U Ď Ω ,

where q is the strength of sources for the quantity. If u is smooth, by the divergence theorem,
ż

U
ut dx =

ż

U
(q ´ divF) dx ñ

ż

U

[
ut + divF ´ q

]
dx = 0

for all open domains U with piecewise smooth boundary BU . We then obtain the equation
of continuity ut + divF = q .

‚ The conservation of mass

Let ϱ(x, t) and u(x, t) denote the density and the velocity of a fluid at point x at time t.
Then the density flux F = ρu, and the equation of continuity reads

ϱt + div(ϱu) = 0 @x P Ω , t P R . (3.18)

In particular, if the density of a fluid is constant (incompressible fluid), then the velocity u
of this fluid must satisfy

divu = 0 in Ω . (3.19)

3.2.3 The heat equations

Let ϑ(x, t) defined on Ω ˆ (0, T ] be the temperature of a material body at point x P Ω at
time t P (0, T ], and c(x), ϱ(x), k(x) be the specific heat, density, and the inner thermal
conductivity of the material body at x. Then by the conservation of heat, for any open set
U Ď Ω,

d

dt

ż

U
c(x)ϱ(x)ϑ(x, t) dx =

ż

BU
k(x)∇ϑ(x, t) ¨ N(x) dS , (3.20)

where N denotes the outward-pointing unit normal of U . Assume that u is smooth, and U
is a domain with piecewise smooth boundary. By the divergence theorem, (3.20) implies

ż

U
c(x)ϱ(x)ϑt(x, t) dx =

ż

U
div

(
k(x)∇ϑ(x, t)

)
dx .



Since U is arbitrary, the equation above implies

c(x)ϱ(x)ϑt(x, t) ´ div(k(x)∇ϑ(x, t)) = 0 @x P Ω , t P (0, T ].

If k is constant, then
cϱ

k
ϑt = ∆ϑ ”

n
ÿ

i=1

B 2ϑ

Bx2i
.

If furthermore c and ϱ are constants, then after rescaling of time we have

ϑt = ∆ϑ . (3.21)

This is the standard heat equation, the prototype equation of parabolic equations.
We need complementary conditions to specify a particular solution of (3.21):

1. Initial condition: ϑ(x, 0) = ϑ0(x), where ϑ0(x) is a given function.

2. Boundary condition: if BΩ ‰ H, some boundary condition of u at x P BΩ for all time
have to be introduced by physical reason to specify a unique solution.

(a) Dirichlet condition: ϑ(x, t) = g(x, t) for all x P BΩ and t ě 0, where g is a given
function.

(b) Neumann condition: Bϑ

BN = 0 for all x P BΩ and t ě 0, where Bϑ

BN ” N ¨ ∇ϑ and
g is a given function.

(c) Robin condition: Bϑ

BN +hu = g for all x P BΩ and t ě 0, where h and g are given
functions.

3.2.4 The wave equations

Consider the membrane (of a drum) as a graph of a function z = u(x1, x2) for (x1, x2) P Ω.

dA

Ω

dS

Suppose that the energy stored in the membrane is given by

E(u) =

ż

Ω

T
( dS
dA

´ 1
)
dA =

ż

Ω

T
(a

1 + |∇u|2 ´ 1
)
dA ,



where T is called the tension of a membrane. In other words, to deform a membrane from
its unforced equilibrium state to a surface S given by z = u(x1, x2) requires the input of the
energy shown above.
Question: If the deformation of the membrane is due to a small external force f , what is
the relation between f and u?

Suppose that an small external force ∆f = ∆f(x1, x2) is suddenly exerted onto the
membrane (so that the total force added on the membrane is f + ∆f), and the membrane
deforms to the surface z = (u + ∆u)(x1, x2) slowly. We note that ∆f is a function of
∆u and ∆f Ñ 0 as ∆u Ñ 0. Then the extra energy needed to deform the membrane is
E(u+ ∆u) ´ E(u), while this extra work is done by the force f + ∆f given by

ż

Ω

(f + ∆f)∆u dx .

Therefore,
E(u+ ∆u) ´ E(u) =

ż

Ω

(f + ∆f)∆u dx .

Let φ be a given C 1 function and ∆u = tφ. Then if t ‰ 0,

E(u+ tφ) ´ E(u)

t
=

ż

Ω

(f + ∆f)φdx .

Since ∆f Ñ 0 as t Ñ 0, we find that

lim
tÑ0

E(u+ tφ) ´ E(u)

t
=

ż

Ω

fφ dx . (3.22)

On the other hand, assuming that u is a smooth function,

δE(u;φ) ” lim
tÑ0

E(u+ tφ) ´ E(u)

t
= lim

tÑ0

ż

Ω

T

a

1 + |∇u+ t∇φ|2 ´
a

1 + |∇u|2

t
dA

=

ż

Ω

T
(

B

B t

ˇ

ˇ

ˇ

t=0

a

1 + |∇u+ t∇φ|2
)
dA =

ż

Ω

T
∇u ¨ ∇φ

a

1 + |∇u|2
dA

=

ż

Ω

div
(

Tφ∇u
a

1 + |∇u|2

)
dA ´

ż

Ω

φ div
(

T∇u
a

1 + |∇u|2

)
dA .

where we have used div(φF) = φ divF + F ¨ ∇φ to conclude the last equality. By the
divergence theorem, with N denoting the outward-pointing unit normal on BΩ,

δE(u;φ) =

ż

BΩ

Tφ∇u
a

1 + |∇u|2
¨ N dA ´

ż

Ω

φ div
(

T∇u
a

1 + |∇u|2

)
dA ;

thus (3.22) implies that
ż

Ω

[
div

(
T∇u

a

1 + |∇u|2

)
+f

]
φdA´

ż

BΩ

T
a

1 + |∇u|2

Bu

BNφdA = 0 for all C 1-function φ . (3.23)

In particular,
ż

Ω

[
div

(
T∇u

a

1 + |∇u|2

)
+ f

]
φdA = 0 for all C 1-function φ that vanishes on BΩ . (3.24)



The above identity implies that

div
(

T∇u
a

1 + |∇u|2

)
+ f = 0 in Ω . (3.25)

Therefore,

1. If the membrane is constrained on the boundary; that is, the boundary of the mem-
brane is fixed (for example, u = 0 on BΩ), then u satisfies that

´div
(

T∇u
a

1 + |∇u|2

)
= f in Ω , (3.26a)

u = 0 on BΩ . (3.26b)

2. If the membrane is not constrained on the boundary (such as the banners), then (3.23)
and (3.25) imply that

ż

BΩ

T
a

1 + |∇u|2

Bu

BNφdA = 0 for all C 1-function φ .

Therefore, Bu

BN = 0 on BΩ (where we assume that T ą 0 everywhere) which shows
that u satisfies

´div
(

T∇u
a

1 + |∇u|2

)
= f in Ω , (3.27a)

Bu

BN = 0 on BΩ . (3.27b)

Remark 3.32. If u = 0 on the boundary, we will not have an extra boundary condition
(3.27b) (even though at the first glance it seems the case) since if u = 0 on BΩ, then all
possible displacement ∆u should also satisfy that ∆u = 0 on BΩ; thus φ also has to vanish
on BΩ in the derivation of (3.23). In other words, if the membrane is constrained, instead
of (3.23) we should obtain (3.24) directly.

Remark 3.33. By expanding the derivatives, we find that

div
(

T∇u
a

1 + |∇u|2

)
=

div(T∇u)
a

1 + |∇u|2
+ T∇u ¨ ∇ 1

a

1 + |∇u|2

=
div(T∇u)
a

1 + |∇u|2
´ T

2
ÿ

i,j=1

uxiuxjuxixj
a

1 + |∇u|2
3 .

Therefore, if |∇u| ! 1 (which is a valid assumption for the case of drums), we find that

div
(

T∇u
a

1 + |∇u|2

)
« div(T∇u) ;

thus (3.26) can be approximated by
"

´div(T∇u) = f in Ω ,

u = 0 on BΩ .
(D)

while (3.27) can be approximated by
#

´div(T∇u) = f in Ω ,
Bu

BN = 0 on BΩ .
(N)



‚ Equation for vibrating membrane

Let T be the tension, ϱ be the density, and f be the density of the external force which may
depend on x and t.
d’Alembert’s principle:

ż

Ω

[
´T∇u ¨ ∇φ+ (f ´ ϱutt)φ

]
dx = 0

for all φ compatible with the existence constraints. Therefore,

1. Membrane fastened on the boundary:
$

’

&

’

%

ϱutt ´ div(T∇u) = f in Ω ˆ (0, T ] ,

u = g on BΩ ˆ (0, T ] ,

u(x, 0) = g(x) , ut(x, 0) = h(x) for all x P Ω .

2. Membrane with free boundary:
$

’

’

’

&

’

’

’

%

ϱutt ´ div(T∇u) = f in Ω ˆ (0, T ] ,

Bu

BN = 0 on BΩ ˆ (0, T ] ,

u(x, 0) = g(x) , ut(x, 0) = h(x) for all x P Ω .

3.2.5 The Navier-Stokes equations

Aside from the equation of continuity (3.18), at least an equation for the fluid velocity u is
required to complete the system. Consider that conservation of momentum m = ϱu. By
the fact that the rate of change of momentum of a body is equal to the resultant force acting
on the body, the conservation of momentum states that

d

dt

ż

U
m dx = ´

ż

BU
m(u ¨ N) dS +

ż

BU
σ dS +

ż

U
f dx , (3.28)

where N is the outward-pointing unit normal of BU , f is the external force (such as the
gravity) on the fluid system, and σ is the stress (應力) exerted by the fluid given by

σ = 2µDefuN ´ pN ,

where µ is called the dynamical viscosity (which may depend on u) and Defu, called the
rate of strain tensor, is the symmetric part of the gradient of u given by

(Defu)ij =
1

2

(
Bui

Bxj
+

Buj

Bxi

)
.

In other words, if σ = (σ1, σ2, σ3), then

σi = µ
3
ÿ

j=1

(Bui

Bxj
+

Buj

Bxi

)
Nj ´ pNi .



Assuming the smoothness of the variables, (3.28) and the divergence theorem imply that
for each 1 ď i ď 3,

ż

U

[
mi
t +

n
ÿ

j=1

B (miuj)

Bxj
+

Bp

Bxi
´

3
ÿ

j=1

B

Bxj

[
µ
(

Bui

Bxj
+

Buj

Bxi

)]
+ fi

]
dx = 0

for all regular domain U Ď Ω. As a consequence, we obtain the momentum equation

(ϱu)t + div(ϱu b u) +∇p = div(µDefu) + f in Ω ˆ (0,8) , (3.29)

where for a matrix a = [aij], (diva)i ”
3
ř

j=1

Baij
Bxj

.

‚ Newtonian and non-Newtonain fluids

1. Newtonian fluids: the viscosity µ is a constant.

2. Non-Newtonian fluids: the viscosity µ is a function of u.

Consider the Newtonian case. If the fluids under consideration is incompressible, we let
ϱ = 1 and (3.19) and (3.29) together imply the Navier-Stokes equations

ut + u ¨ ∇u +∇p = µ∆u + f in Ω ˆ (0, T ) , (3.30a)
divu = 0 in Ω ˆ (0, T ) , (3.30b)

where we have used the incompressibility condition (3.19) to deduce that
3
ÿ

j=1

B

Bxj

[
µ
(

Bui

Bxj
+

Buj

Bxi

)]
= µ

3
ÿ

j=1

B

Bxj

(
Bui

Bxj
+

Buj

Bxi

)
= µ

3
ÿ

j=1

B 2ui

Bx2j
= µ∆ui .

Initial conditions: u(x, 0) = u0(x) for all x P Ω.
Boundary condition:

1. No-slip boundary condition: u = 0 on BΩ.

2. Navier boundary condition: u ¨ N = 0 and N ˆ (µDefuN) = α(N ˆ u) on BΩ for
some constant α ą 0. This condition is based on the assumption that the traction
force due to the viscous effect is proportional to the fluid velocity on the boundary.

‚ Some brief introduction about stress/traction

‚ What is the stress/traction?
Let Σ be a small piece of surface centered at x with area δA and “outward-pointing”
unit normal n. The stress exerted by the fluid on the side toward which n points on
the surface Σ (n 所指向的這一側的流體對曲面 Σ 所施的應力) is defined as

σ(x, t,n) = lim
δAÑ0

δF
δA

,

where δF is the force exerted on the surface by the fluid on that side (only one side
is involved).



‚ General properties of the stress:
1. For a unit vector n = (n1, n2, n3), σ(x, t,´n) = ´σ(x, t,n).
2. At a given point x, suppose that σ(x, t, ej) = τ1je1 + τ2je2 + τ3je3 for 1 ď j ď 3,

where te1, e2, e3u is the standard basis of R3 and τij = τij(x, t). Then

σ(x, t,n) = σ(x, t, e1)n1 + σ(x, t, e2)n2 + σ(x, t, e3)n3 =
( 3
ÿ

i,j=1

τijnj

)
ei (‹)

or equivalently,

σ(x, t,n) =

τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

n1

n2

n3

 .

3. By the conservation of angular momentum, τij = τji for all 1 ď i, j ď 3. In other
words, the matrix (called the stress tensor) τ = [τij] is symmetric.

Figure 3.2: (a) On each side orthogonal to the coordinate axis, the stress is given by σ(´ei) =
3
ř

j=1

σijej. (b) On the “slant” side, the stress is given by σ(n) = tn = tn1e1 + tn2e2 + tn3e3.

(c) By force balances, σ(n)An = σ(e1)A1 + σ(e2)A2 + σ(e3)A3 which leads to (‹).

‚ The reason why 2µDefuN appears in the expression of σ:
1. Suppose that Σ is the xy-plane, n = (0, 0, 1), and u = (u, 0, 0). The larger the

value Bu

Bx3
, the larger the traction due to the fluid; thus the traction should be

proportion to Bu

Bx3
. Suppose that the traction, without considering the effect of

pressure, is µ Bu

Bx3
. Then σ = µ

Bu

Bx3
e1.

2. If n = (0, 0, 1) but instead u = (u, v, 0), choose a constant unit vector such that

u = (u ¨ pe1)pe1, then σ = µ
B (u ¨ pe1)

Bx3
pe1 = µ

Bu
Bx3

.

3. When n is arbitrary, by the fact that B

Bx3
is the directional derivative in the

direction n when n = (0, 0, 1), it is naive to imagine that σ = µ(∇u)n.
4. Since the stress tensor has to be symmetric, we have σ = 2µDefun.



3.3 Solving PDE using matlabr

The PDEs in the models that we derived above are of the form

ut = A(u) + f or utt = A(u) + f (3.31)

for some differential operator A; that is, for a given smooth function u, A(u) is some
functions of partial derivatives of u with respect to x. We are not going to talk about
numerical method of solving PDEs (which is a big topic), but instead try to make use of
the ODE solver (such as ode45 in matlab) which requires that we write A(u) in terms of
the value of u (so that the right-hand side of (3.31) can be expressed as φ(x, t, u)). We note
that computers view functions as a map whose values are known on just discrete points (of
interests), so to find a numerical solution u to the PDEs above is to find the “approximated”
values of u on a given set of discrete points. Therefore, in order to make use of the ODE
solver to solve the PDEs above, we only need to know how to compute the partial derivatives
of u w.r.t. x in terms of the values of u on discrete points.
Caution: Making A(u) in terms of values of u at discrete points does not always work to
solve PDEs numerically!!!

‚ Central differences

Recall the Taylor Theorem that if w is a (n+ 1)-times differentiable function in x,

w(x+ h) =
n
ÿ

k=0

w(k)(x)

k!
hk +

w(n+1)(ξ)

(n+ 1)!
hn+1 ,

where ξ is a point between x and x+ h. Now suppose that we are interested in the value of
the solution u on the set of discrete points which consists of a regular partition P =

␣

0 =

x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn = L
(

of [0, L]. Write }P} = h =
L

n
and assume that the solution

w is four times continuously differentiable in x. Then for x being one of x1
is,

w(x+ h) = w(x) + hw 1(x) +
h2

2
w 11(x) +

h3

6
w 12(x) +O(h4) ,

w(x ´ h) = w(x) ´ hw 1(x) +
h2

2
w 11(x) ´

h3

6
w 12(x) +O(h4) ,

where the notation O(h4) means that it is a function of h and the quotient of this function
and h4 is still bounded (when h is close to 0). More generally,

g(h) = O(hk) (as h Ñ 0) if and only if
ˇ

ˇ

ˇ

g(h)

hk

ˇ

ˇ

ˇ
ď M (when h is close to zero).

Therefore,

w 1(x) =
w(x+ h) ´ w(x ´ h)

2h
+O(h2) ,

w 11(x) =
w(x+ h) ´ 2w(x) + w(x ´ h)

h2
+O(h2) .



In other words, if w is four times continuously differentiable in x, the first and second
derivatives of w at x can be made as accurate as possible using the values of w at x˘h and
x by making h small enough. The finite difference scheme

w 1(x) «
w(x+ h) ´ w(x ´ h)

2h
and w 11(x) «

w(x+ h) ´ 2w(x) + w(x ´ h)

h2
(3.32)

of finding the approximated value of the first and second derivatives of w is called the central
difference scheme.

Remark 3.34. If w is only three times continuously differentiable in x, then

w 1(x) =
w(x+ h) ´ w(x ´ h)

2h
+O(h) ,

w 11(x) =
w(x+ h) ´ 2w(x) + w(x ´ h)

h2
+O(h) .

Remark 3.35. Let ∆h be an operation defined by the following: if w is a function of x,
then ∆hw is a function given by

(∆hw)(x) =
w(x+ h) ´ w(x ´ h)

h
.

Then

(∆2
h
2

w)(x) ” (∆h
2
∆h

2
w)(x) =

(∆h
2
w)

(
x+ h

2

)
´ (∆h

2
w)

(
x ´ h

2

)
h

=

w(x+ h) ´ w(x)

h
´
w(x) ´ w(x´ h)

h
h

=
w(x+ h) ´ 2w(x) + w(x ´ h)

h2

which shows that the central difference scheme of computing the second derivative is the
same as applying the central difference scheme of computing the first derivative twice (but
with difference mesh size).

3.3.1 The 1-dimensional heat equations

We first consider the 1-d heat equations with Dirichlet boundary condition

ϑt ´ κϑxx = f(x, t) in (0, L) ˆ R+ , (3.33a)
ϑ = ϑ0 on (0, L) ˆ t0u , (3.33b)

ϑ(0, t) = a(t) , ϑ(L, t) = b(t) on t0, Lu ˆ R+ . (3.33c)

Let
␣

0 = x0 ă x1 ă ¨ ¨ ¨ ă xn+1 = L
(

be a regular partition of [0, L], and h = L/(n+ 1).
Define φi(t) = ϑ(xi, t) and fi(t) = f(xi, t). Then (3.33) implies that

dφi
dt

´
κ

h2
(φi+1 ´ 2φi + φi´1) = fi(t) +O(h2) for all 1 ď i ď n and t ą 0 ,

φi(0) = ϑ0(xi) for all 1 ď i ď n ,

ϑ0(t) = a(t) , ϑn+1(t) = b(t) for all t ą 0 ,



where ϑ0 is a given function independent of t, and a, b are given constants. Therefore,
naively we look for the solution to the ODE

d

dt



ϕ1(t)
ϕ2(t)
ϕ3(t)
...
...

ϕn´2(t)
ϕn´1(t)
ϕn(t)


=

κ

h2



´2 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
1 ´2 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 1 ´2 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
... 0

. . . . . . . . . 0 ¨ ¨ ¨ 0
... . . . . . . . . . . . . ¨ ¨ ¨ 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ´2 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ´2 1
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ´2





ϕ1(t)
ϕ2(t)
ϕ3(t)
...
...

ϕn´2(t)
ϕn´1(t)
ϕn(t)


+
κ

h2



a(t)
0
............
0
b(t)


+



f1(t)
f2(t)
............

fn´1(t)
fn(t)


with initial condition[

ϕ1(0) ϕ2(0) ¨ ¨ ¨ ϕn(0)
]T

=
[
ϑ0(x1) ϑ0(x2) ¨ ¨ ¨ ϑ0(xn)

]T

and treat ϕi(t) as an approximated value of φi(t).

Example 3.36. Now suppose that we look for the numerical solution of

ϑt(x, t) ´ ϑxx(x, t) = x2 sin t for all 0 ă x ă 1 and t ą 0 ,

ϑ(x, 0) = 1 + x+ sin(πx) for all 0 ă x ă 1 ,

ϑ(0, t) = 1 , ϑ(1, t) = 2 for all t ą 0 .

We first input the function f(x, t), ϑ0(x, t), a(t) and b(t) as follows:

function output = forcing(x,t)
output = x.^2*sin(t);

function output = theta 0(x)
output = 1 + x + sin(pi*x);

function output = a(t)
output = 1*ones(size(t));

function output = b(t)
output = 2*ones(size(t));

Next we provide the function “heat RHS” as “ODE RHS” before. Here the values κ, h,

and the matrix K =



´2 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
1 ´2 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 1 ´2 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
... 0

. . . . . . . . . 0 ¨ ¨ ¨ 0
... . . . . . . . . . . . . ¨ ¨ ¨ 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ´2 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ´2 1
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ´2


will be part of the inputs (so that

we do not have to adjust them every time we modify the equations and the data).

function yp = heat RHS(t,y,kappa,h,K)
n = length(y);

x = [h:h:n*h]’;

yp = kappa/h^2*(K*y + [a(t);zeros(n-2,1);b(t)]) + forcing(x,t);



Finally, we have the main code as follows:

L = 1
n = 10;

kappa = 1;

h = L/(n+1);

T end = 1;

x = [h:h:n*h]’;

K = –2*eye(n) + diag(ones(n-1,1),1) + diag(ones(n-1,1),-1);

[t,y] = ode45(@(t,y) heat RHS(t,y,kappa,h,K),[0 T end],theta 0(x));

y = [a(t),y,b(t)]; % adding the values of the solution at the end-points

x = 0:h:(n+1)*h;

plot(x,y(end,:),’b’);

Here we use the command “eye” and “diag” to produce the matrix K. We remark that
“eye(n)” will produce an n ˆ n identity matrix, and for a given vector V “diag(V ,k)” will
produce an m ˆ m matrix whose k-th diagonal is the vector V , where m = length(V ) + k.
We also note that each row of y, obtained using the ODE solver in the penultimate (倒數第
二) line of the codes, provides the approximated value of φ at x1, ¨ ¨ ¨ , xn at each sampled
time, so the last line of the codes is to add ϑ(0, t) and ϑ(L, t) into the solution (for the
purpose of plotting the solution).

If one wants to see the evolution of the solution, we can do the following:

x = 0:h:(n+1)*h;

figure(1)

for j=1:length(t)

plot(x,y(j,:),’b’);

drawnow; % force matlab to run the for loop

end;

3.3.2 The 1-dimensional wave equations

Now we consider the 1-d wave equations with Neumann boundary condition

utt ´ c2uxx = f(x, t) in (0, L) ˆ R+ , (3.34a)
u = u0 , ut = u1 on (0, L) ˆ t0u , (3.34b)

ux(0, t) = a(t) , ux(L, t) = b(t) on t0, Lu ˆ R+ . (3.34c)



For an integer n ě 2, define h =
L

n´ 1
and xi = (i ´ 1)h for 1 ď i ď n. Let vi(t) = u(xi, t)

for 1 ď i ď n. Then (3.34a) and the central difference scheme (3.32) imply that

d2vi
dt2

´ c2
vi+1 ´ 2vi + vi´1

h2
= fi(t) +O(h2) for all 2 ď i ď n ´ 1 and t ą 0 . (3.35)

where as in the previous section fi(t) = f(xi, t). Unlike the case of PDEs with Dirichlet
boundary condition, now v1(t) = u(0, t) and vn(t) = u(L, t) are also unknown, so to complete

the system we need to know how to compute dv1
dt

and dvn
dt

.
Let x0 = ´h and xn+1 = L + h. Using the central difference scheme (3.32), (3.34c)

implies that

a(t) = ux(x1, t) =
u(x2, t) ´ u(x0, t)

2h
+O(h2) ,

b(t) = ux(xn, t) =
u(xn+1, t) ´ u(xn´1, t)

2h
+O(h2) .

Therefore, even though u(´h, t) and u(L+h, t) are meaningless objects (since u is a function
defined on [0, L]), it is reasonable to assume that u(x0, t) = u(x2, t)+O(h3) and u(xn+1, t) =

u(xn´1, t) +O(h3). Using the central difference scheme (3.32), we obtain that

uxx(x1, t) =
u(x1 + h, t) ´ 2u(x1, t) + u(x1 ´ h, t)

h2
=

2

h2
[
v2(t) ´ v1(t)

]
´

2

h
a(t) +O(h) ,

uxx(xn, t) =
u(xn + h, t) ´ 2u(xn, t) + u(xn ´ h, t)

h2
=

2

h2
[
vn´1(t) ´ vn(t)

]
+

2

h
b(t) +O(h) ;

thus

d2v1
dt2

´
2c2

h2
(v2 ´ v1) = f1(t) +O(h) ,

d2vn
dt2

´
2c2

h2
(vv´1 ´ vn) = fn(t) +O(h) .

Similar to the derivation in Section 3.3.1, naively we consider

d2

dt2



v1(t)
v2(t)
v3(t)
...
...

vn´2(t)

vn´1(t)

vn(t)


=
c2

h2



´2 2 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
1 ´2 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 1 ´2 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
... 0

. . . . . . . . . 0 ¨ ¨ ¨ 0
... . . . . . . . . . . . . ¨ ¨ ¨ 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ´2 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ´2 1
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 2 ´2





v1(t)
v2(t)
v3(t)
...
...

vn´2(t)

vn´1(t)

vn(t)


+
c2

h2



´a(t)
0
............
0
b(t)


+



f1(t)
f2(t)
............

fn´1(t)

fn(t)


with initial conditions[

v1(0) v2(0) ¨ ¨ ¨ vn(0)
]T

=
[
u0(x1) u0(x2) ¨ ¨ ¨ u0(xn)

]T
,[

v 1
1(0) v 1

2(0) ¨ ¨ ¨ v 1
n(0)

]T
=

[
u1(x1) u1(x2) ¨ ¨ ¨ u1(xn)

]T
,



and treat vi(t) as an approximated value of vi(t). We note that in order to use the ODE
solver to solve the ODE above, we need to assign w = v 1(t), where v = (v1, ¨ ¨ ¨ , vn)T, and
write the system above as

d

dt

[
v
w

]
=

[ w
c2

h2
Kv

]
+

[
0

f (t)

]
=

[ In 0

0
c2

h2
K

][
v
w

]
+

[
0

f (t)

]
, (3.36)

where In is the n ˆ n identity matrix and f = (f1, ¨ ¨ ¨ , fn)
T.

Once (3.36) is obtained, it should be straight forward, as in the case of solving heat
equations, to solve the ODE system numerically using the ODE solver. Here we only
provide the code of the right-hand side function:

function yp = wave RHS(t,y,c,h,K)
n = length(y);

x = [0:h:(n-1)*h]’;

yp = c^2/h^2*[eye(n), zeros(n,n); zeros(n,n),K]*y + [zeros(n,1);forcing(x,t)];

while K should be provided in the main code as

K = –2*eye(n) + diag([2;ones(n-2,1)],1) + diag([ones(n-2,1);2],-1);

We note that the first n rows of the solution y obtained using the ODE solver corresponds
to the approximated value of u at tx1, ¨ ¨ ¨ , xnu, while the rest n rows of y corresponds to
the approximated value of ut at tx1, ¨ ¨ ¨ , xnu.

3.3.3 The 1-dimensional conservation laws

We have to warn the readers that the usual central difference scheme (to approximate the
partial derivatives w.r.t. x) together with the ODE solver is not a useful tool of solving the
PDEs from conservation laws. In order to demonstrate this fact, we look at the numerical
solution of the equation

ut + ux = q(x, t) in (0, L) ˆ (0, T ) , (3.37a)
u(x, 0) = u0(x) on (0, L) ˆ tt = 0u , (3.37b)

u(0, t) = u(L, t) = 0 for all t ą 0 . (3.37c)

Let P = t0 = x0 ă x1 ă ¨ ¨ ¨ ă xn+1 = Lu be a regular partition of [0, L], h = L/(n+ 1),
and define ui(t) = u(xi, t) for 0 ď i ď n+ 1. Then (3.37) implies that

dui
dt

+ ux(xi, t) = q(xi, t) for all 1 ď i ď n and t ą 0 .

Using the central difference scheme (3.32) to approximate ux(xi, t), we find that

dui
dt

+
ui+1(t) ´ ui´1(t)

2h
= q(xi, t) +O(h2) for all 1 ď ilen and t ą 0



where u0(t) = un+1(t) = 0. The ODE above motivates the following ODE

d

dt



v1
v2
v3
.........

vn´2

vn´1

vn


=

1

2h



0 ´1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

1 0 ´1 0 ¨ ¨ ¨ ¨ ¨ ¨
...

0 1 0 ´1 0 ¨ ¨ ¨
...

... . . . . . . . . . . . . 0
...

... 0 1 0 ´1 0

... 0 1 0 ´1

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1 0





v1
v2
v3
.........

vn´2

vn´1

vn


+



q1(t)
q2(t)
q3(t)
.........

qn´2(t)
qn´1(t)
qn(t)


with initial condition[

v1(0) v2(0) ¨ ¨ ¨ vn(0)
]T

=
[
u0(x1) u0(x2) ¨ ¨ ¨ u0(xn)

]T

and treat vi(t) as approximated value of ui(t). So the main code is

L = 10
n = 100;

h = L/(n+1);

T end = 10;

x = [h:h:n*h]’;

K = diag(ones(n-1,1),-1) - diag(ones(n-1,1),1);

[t,y] = ode45(@(t,y) cl RHS(t,y,h,K),[0 T end],u 0(x));

y = [zeros(size(t)),y,zeros(size(t))]; % adding the values at the end-points

where cl RHS is given by

function yp = cl RHS(t,y,h,K)
n = length(y);

x = [h:h:n*h]’;

yp = 1/(2*h)*K*y + source q(x,t)];

Example 3.37. We first consider the case L = 10, q(x, t) = (x´L) cosx sin t+sin(x) sin(t)+
(x´L) sin(x) cos t and u0 = 0. We note that the solution is indeed u(x, t) = (x´L)˚sin(x)˚

sin t (which is a smooth function so that the central difference scheme (3.32) provides good
approximation of the derivatives). Knowing the exact solution of the PDE enables us to
compare the numerical solution and the exact solution.

We still need

function output = source q(x,t)
output = (x-10).*cos(x)*sin(t) + sin(x)*sin(t) + (x-10).*sin(x)*cos(t);



and

function output = u 0(x)
output = zeros(size(x));

to run simulations. To see the outcome, we use

x = 0:h:(n+1)*h;

figure(1)

for j=1:length(t)

plot(L/2,30,’.’); % this is to fix the windows

hold on;

plot(L/2,-30,’.’); % this is to fix the windows

plot(x,(x-L).*sin(x)*sin(t(j)),’r’);

plot(x,y(j,:),’b’);

hold off;

drawnow; % force matlab to run the for loop

end;

You should be able to see that the numerical solution is on top of the exact solution (which
should imply that there is no bug in our code).

We next consider the case L = 10, q(x, t) = x(x ´ L) cos t + (2x ´ L) sin t and u0 = 0.
The exact solution is u(x, t) = x(x´L) sin t. Now we modify the function source q and the
exact solution in the comparison of the numerical solution and the exact solution as follows:

function output = source q(x,t)
output = x.*(x-10).*cos(t) + (2*x-10)*sin(t);

and change the line in magenta by

plot(x,x.*(x-L).*sin(t(j)),’r’);

You will see a sawtooth like graph of the numerical solution, while the exact solution is still
smooth.

Finally, you can change the source to

function output = source q(x,t)
output = abs(x-5)-5;

and you will find that the numerical solution becomes a garbage immediately.



3.3.4 Built-in PDE solver in matlabr

There is a built-in solver for PDE in matlabr. The PDE has to be of the form

m
B 2u

B t2
+ d

Bu

B t
´ div(c∇u) + au = f in Ω , (3.38)

where either the Dirichlet, Neumann or mixed type boundary condition can be imposed.
The unknown u can be a scalar or vector-valued function.

The main tool of solving PDE of form (3.38) in matlabr is the command “solvepde”.

Keywords to check in matlabr:

1. solvepde

2. Parametrized Function for 2-D Geometry Creation

3. generateMesh

4. applyBoundaryCondition

5. setInitialConditions

6. Coefficient for specifyCoefficients

7. CoefficientAssignment Properties



Chapter 4

Optimization Problems and Calculus
of Variations

4.1 Examples of Optimization Problems

4.1.1 Heron’s Principle

Given a straight line L and two points a, b on a plane P , find a point x on L such that
|ax| + |bx| is minimal.

Theorem 4.1. If x is a point of L such that the sum |ax| + |bx| is the least possible, then
the lines ax and bx form equal angles with the line L.

4.1.2 Steiner’s Tree Problem

The Steiner tree problem is superficially similar to the minimum spanning tree problem:
given a set V of points (vertices), interconnect them by a network (graph) of shortest
length, where the length is the sum of the lengths of all edges. The difference between
the Steiner tree problem and the minimum spanning tree problem is that, in the Steiner
tree problem, extra intermediate vertices and edges may be added to the graph in order to
reduce the length of the spanning tree.

4.1.3 Dido’s Problem (Isoperimetric Problem)

For a simple closed curve C in the plane, let ℓ(C) denote the length of the curve. The
isoperimetric problem is to find a curve C satisfying ℓ(C) = L which encloses the largest
area.

If A(C) denotes the area enclosed by the curve C, then the isoperimetric inequality
provides that

ℓ(C)2 ě 4πA(C) for every simple closed curve C , (4.1)

and “=” holds if and only if C is a circle.
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Sketch of the proof. Let Pn denote the collection of simple closed polygon with 2n sides
and with length L. We look for one P in Pn which encloses the largest area. Let

Pn = [A1, A2, ¨ ¨ ¨ , An, An+1, ¨ ¨ ¨ , A2n, A1]

be a polygon in Pn which encloses the largest area. We use the notion Aj = Ak if j = k

(mod 2n).
Claim I: Pn is convex.
Claim II: For all j P N, |AjAj+1| = |Aj+1Aj+2|.
Claim III: For all j P N, [Aj, Aj+1, ¨ ¨ ¨ , Aj+n, Aj] and [Aj+n, Aj+n+1, ¨ ¨ ¨ , Aj+2n, Aj+n] en-
closes the same area.
Claim IV: For 1 ă j ă n+ 1, A1Aj K AjAn+1 at Aj.
Proof of Claim IV: If A1Aj is not perpendicular to AjAn+1 at Aj, we can adjust the
position of A1 to A1

1, and adjust accordingly the positions of A2, ¨ ¨ ¨ , Aj´1 to A1
2, ¨ ¨ ¨ , A1

j´1 so
that the polygon [A1, A2, ¨ ¨ ¨ , Aj, A1] is the identical (in shape) to [A1

1, A
1
2, ¨ ¨ ¨ , A1

j´1, Aj, A
1
1].

We note that the area enclosed by the polygon [A1
1, ¨ ¨ ¨ , A1

j´1, Aj, Aj+1, ¨ ¨ ¨ , An+1, A
1
1] is

larger than the area enclosed by the polygon [A1, ¨ ¨ ¨ , An+1, A1]. (End of proof of Claim IV)

By Claim IV, A1
js locates on a circle (with diameter |A1An+1|). Let rn be the radius of

the circle in which Pn is inscribed. Then 4nrn sin
π

2n
= L and the area An enclosed by Pn is

An = nr2n sin
π

n
=
L2

8n
cot π

2n
;

thus An+1 ě An for all n P N (Exercise!). The circle C with radius r has length L and
encloses the largest area among all simple closed curves with length L and L2 = 4πA. ˝

On the other hand, the minimization problem can be reformulated by looking for “min-
imizer” in the space of piecewise differentiable closed curve; that is, we look for curves C
that can be parameterized, using the arc-length, by vector-valued function (x(s), y(s)) in
the set

A =
!

(x(s), y(s))
ˇ

ˇ

ˇ
x, y P D1([0, L];R), x(0) = x(1), y(0) = y(1), ẋ2(s) + ẋ2(s) = 1

)

,

where D1([0, 1];R) consists of continuous, piecewise continuously differentiable functions on
[0, L]. Then the problem above is equivalent to the minimization problem

min
(x,y)PA

ż L

0

[
x(s)ẏ(s) ´ ẋ(s)y(s)

]
ds .

4.1.4 Minimal Surface of Revolution

This is a problem of finding a curve C connecting (x0, y0) and (x1, y1), where x0 ă x1, such
that its surface of revolution has the least surface area. Given a function y = y(x) satisfying



y(x0) = y0 and y(x1) = y1, the surface of revolution of the curve C =
␣

(x, y(x))
ˇ

ˇ y :

[x0, x1] Ñ R is differentiable, y(x0) = y0, y(x1) = y1
(

is given by

2π

ż x1

x0

y
a

1 + y 12(x) dx .

Therefore, the problem of minimal surface of revolution is to find a function y P A ”
␣

y P

D1([x0, x1])
ˇ

ˇ y(x0) = y0, y(x1) = y1
(

which minimizes the functional

I(y) = 2π

ż x1

x0

y
a

1 + y 12(x) dx .

4.1.5 Newton’s Problem

The Newton problem is to find a curve C connecting (x0, y0) and (x1, y1), where x0 ă x1,
such that its surface of revolution has the least resistance from the air when it moves along
x-axis with speed v (or velocity (v, 0, 0)).

Let u be the normal component of the velocity (given some surface of revolution)
(
thus

u =
dy

ds
v =

y 1v
a

1 + y 12

)
. Suppose that for each surface element dS (at point (x, y, z)), the

resistance force is
[
φ(u)dS

]
N for some function φ, where N is the unit normal of the surface

with negative first component (which means the resistance force points to the left). If the
surface of revolution is given by the curve y = y(x), then with ds denoting the infinitesimal
arc-length, for each slice of the surface the total force acting on this slice is 2πyφ(u)ds(N ¨e1)
(the vertical component cancels out); thus by the fact that dy

ds
= (N ¨e1), the total resistance

force (in magnitude) is

I(y) = 2π

ż x1

x0

yφ(u)ds
dy

ds
= 2π

ż x1

x0

yy 1φ
( y 1v
a

1 + y 12

)
dx .

Therefore, the Newton problem can be formulated as “finding a function y P A ”
␣

y P

D1([x0, x1])
ˇ

ˇ y(x0) = y0, y(x1) = y1
(

which minimizes I(y)”.

Newton’s model: φ(u) = u2.

4.1.6 Brachistochrone Problem

A brachistochrone curve, meaning ”shortest time” or curve of fastest descent, is the curve
that would carry an idealized point-like body, starting at rest and moving along the curve,
without friction, under constant gravity, to a given end point in the shortest time. For given
two point (0, 0) and (a, b), where b ă 0, what is the brachistochrone curve connecting (0, 0)

and (a, b)?
Given a curve parameterized by

␣

(f(y), y)
ˇ

ˇ y P [b, 0]
(

for some continuously differentiable
function f , the total time required to travel from (0, 0) to (a, b) is given by

T (f) =

ż 0

b

a

1 + f 12(y)
?

´2gy
dy .



Therefore, the brachistochrone problem can be formulated as finding f P A =
␣

h P

C 1([0, b])
ˇ

ˇh(0) = 0, h(b) = a
(

such that T (f) is minimized. In other words, the minimizer
h satisfies that

T (h) = inf
fPA

ż 0

b

a

1 + f 1(y)2
?

´2gy
dy .

4.2 Simplest Problem in Calculus of Variations
Let [a, b] Ď R, L : [a, b]ˆRˆR Ñ R be continuous. We consider the problem of minimizing
the functional

I(y) =

ż b

a

L(x, y(x), y 1(x)) dx

for y P C 1([a, b]) or D1([a, b]), and y satisfies the boundary condition y(a) = A0, y(b) = B0,
where C 1([a, b]) denotes the space of continuously differentiable functions on [a, b], and
D1([a, b]) denotes the space of continuous, piecewise continuously differentiable functions on
[a, b]. In other words, with A denoting either the set

␣

y P C 1([a, b])
ˇ

ˇ y(a) = A0, y(b) = B0

(

or
␣

y P D1([a, b])
ˇ

ˇ y(a) = A0, y(b) = B0

(

, we consider the minimization problem

inf
yPA

ż b

a

L(x, y(x), y 1(x)) dx . (4.2)

The function L is called the Lagrangian.
In the following discussion, we write L = L(x, y, p) and let argmin

zPA
I(z) denote the min-

imizer, if exists, of the minimization problem min
zPA

I(z). In other word, if y = argmin
zPA

I(z),
then y P A and

I(y) ď I(z) @ z P A .

Remark 4.2. Let

X =
␣

y P C 1([a, b])
ˇ

ˇ y(a) = A0, y(b) = B0

(

Y =
␣

y P D1([a, b])
ˇ

ˇ y(a) = A0, y(b) = B0

(

.

Then argmin
zPX

I(z), if exists, equals argmin
zPY

I(z). To see this, we first note that min
zPX

I(z) ě

min
zPY

I(z); thus for argmin
zPX

I(z) ‰ argmin
zPY

I(z) to hold, we must have py P YzX such that
I(py) ă min

zPX
I(z). By smooth py at corners, we obtain ȳ P X such that I(ȳ) ă min

zPX
I(z), a

contradiction.
However, it is possible that there are only minimizers in D1([a, b]). See Example 4.15

for the detail.

4.2.1 First Variation of I

Let A =
␣

y P D1([a, b])
ˇ

ˇ y(a) = A0, y(b) = B0

(

and N =
␣

η P C 1([a, b])
ˇ

ˇ η(a) = η(b) = 0
(

,
called the admissible set and the test function space, respectively. For y P A, η P N



and ϵ P R, let J(ϵ) = I(y + ϵη) and consider the following quotient

J(ϵ) ´ J(0)

ϵ
=

1

ϵ

ż b

a

[
L(x, y(x) + ϵη(x), y 1(x) + ϵη 1(x)) ´ L(x, y(x), y 1(x))

]
dx

Assume that Ly and Lp are continuous, then

lim
ϵÑ0

J(ϵ) ´ J(0)

ϵ
=

ż b

a

[
Ly(x, y(x), y

1(x))η(x) + Lp(x, y(x), y
1(x))η 1(x)

]
dx

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

” δI(y; η) or δI

δη
(y)

.

This limit, denoted by δI(y; η) or δI
δη

(y), is called the first variation of I at y along η.

Theorem 4.3. If y = argmin
zPA

I(z) is a minimizer of I, then δI(y; η) = 0 for all η P N .

Definition 4.4. The integral equation δI(y; η) = 0 for all η P N is called the weak form
of the Euler-Lagrange equation (associated with the minimization problem (4.2)).

‚ Basic Lemmas

Lemma 4.5. If y P C ([a, b]) and
ż b

a
y(x)η(x) dx = 0 for all η P C ([a, b]), then y ” 0.

Lemma 4.6. If y P C ([a, b]) and
ż b

a
y(x)η 1(x) dx = 0 for all η P N , then y ” c for some

constant c.

Proof. Let η(x) =
ż x

a

(
y(t)´c

)
dt, where the constant c is chosen so that

ż b

a

(
y(t)´c

)
dt = 0.

Then η P N and
ż b

a

ˇ

ˇy(x) ´ c
ˇ

ˇ

2
dx =

ż b

a

(
y(x) ´ c

)
η 1(x) dx = ´c

ż b

a

η 1(x) dx = c
(
η(a) ´ η(b)

)
= 0 .

Therefore, y(x) = c for all x P [a, b]. ˝

Lemma 4.7. If y, z P C ([a, b]) satisfy
ż b

a

[
y(x)η(x) + z(x)η 1(x)

]
dx = 0 @ η P N , (4.3)

then z P C 1([a, b]) and z 1(x) = y(x) for all x P [a, b].

Proof. Let z1(x) =
ż x

a
y(t) dt. Integration-by-parts provides that

ż b

a

y(x)η(x) dx = z1(x)η(x)
ˇ

ˇ

x=b

x=a
´

ż b

a

z1(x)η
1(x) dx = ´

ż b

a

z1(x)η
1(x) dx ;

thus (4.3) implies that
ż b

a

[
z(x) ´ z1(x)

]
η 1(x) dx = 0 @ η P N .

By Lemma 4.6, z(x) ´ z1(x) = C for some constant C. Therefore, z(x) = C +
ż x

a
y(t) dt

which implies that z P C 1([a, b]) and z 1(x) = y(x). ˝



Lemma 4.8. Suppose that y, z P C ([a, b]) and z is not a constant function. If
ż b

a

y(x)η 1(x) dx = 0 @ η P N and η satisfies
ż b

a

z(x)η 1(x) dx = 0 ,

then there are constants λ, µ P R such that y(x) = λz(x) + µ.

Proof. Let η(x) =
ż x

a

(
y(t) ´ λz(t) ´ µ

)
dt, where λ, µ are chosen so that η(b) = 0 and

ż b

a
z(x)η 1(x) dx = 0; that is,

λ

ż b

a

z(x) dx+ µ

ż b

a

dx =

ż b

a

y(x) dx ,

λ

ż b

a

z2(x) dx+ µ

ż b

a

z(x) dx =

ż b

a

y(x)z(x) dx .

Since z is not a constant, the Cauchy-Schwarz inequality implies that the system above has
a unique solution (λ, µ). Since η P N and satisfies

ż b

a
z(x)η 1(x) dx = 0, we have

ż b

a

ˇ

ˇy(x) ´ λz(x) ´ µ
ˇ

ˇ

2
dx =

ż b

a

(
y(x) ´ λz(x) ´ µ)η 1(x) dx = ´µ

ż b

a

η 1(x) dx = 0 ;

thus y(x) = λz(x) + µ for all x P [a, b]. ˝

4.2.2 The Euler-Lagrange Equation

Recall that the weak form of the Euler-Lagrange equation associated with the minimization
problem (4.2) is δI(y; η) = 0 for all η P N .

Theorem 4.9. Suppose that L,Ly, Lp are continuous. If py P A is a minimizer of the
minimization problem (4.2), then

d

dx
Lp(x, py(x), py

1(x)) = Ly(x, py(x), py
1(x)) (4.4)

for point x at which py 1 is continuous.

Proof. Apply Theorem 4.3 and Lemma 4.7 to each interval on which py is of class C 1. ˝

Definition 4.10. Equation (4.4) is called (the strong form of) the Euler-Lagrange equa-
tion (associated with the minimization problem (4.2)).

Remark 4.11.

1. Theorem 4.9 is essentially due to Du Bois-Reymond, so (4.4) is also called the Du
Bois-Reymond equation.



2. If py P C 2([a, b]) and Lpx, Lyp, Lpp are continuous, then py satisfies the following second
order ODE

Lpp(x, py(x), py
1(x))py 11(x)

= Ly(x, py(x), py
1(x)) ´ Lpx(x, py(x), py

1(x)) ´ Lpy(x, py(x), py
1(x))py 1(x) .

This is the equation that Euler originally derived/obtained.

Example 4.12. Now we consider the brachistochrone problem. We rewritten the minimiza-
tion problem as

inf
hPA

´

ż b

0

a

1 + y1(x)2
?

´2gx
dx

where A =
␣

y P D1([0, b])
ˇ

ˇ y(0) = 0, y(b) = a
(

. Therefore, L(x, y, p) = ´

a

1 + p2
?

´2gx
which

implies that the Euler-Lagrange equation for the brachistochrone problem is

d

dx

y 1

?
´2gx

a

1 + y 12
= 0 .

Therefore, if py P A is a minimizer, then in each interval where py 1 is continuous,

py 1

?
´2gx

a

1 + py 12
= C

for some constant C. The equation above shows that py 12 = ´2C2gx(1+py 12) which, together
with the fact that py 1 must be non-positive, implies that

py 1(x) = ´

d

´2C2gx

1 + 2C2gx
.

As a consequence, if py P C 1([0, b]),

py(x) = ´

ż x

0

c

´2C2gt

1 + 2C2gt
dt .

and the constant C is determined by the condition py(b) = a.

Example 4.13. The Euler-Lagrange equation for the minimal surface of revolution problem
is

d

dx

yy 1

a

1 + y 12
=
a

1 + y 12 ,

and the Euler-Lagrange equation for Newton’s problem (with φ(u) = u2) is

d

dx

yy 12(y 12 + 3)

(1 + y 12)2
=

y 13

1 + y 12
.

Theorem 4.14. Suppose that py P D1([a, b]) satisfies the Euler-Lagrange equation (4.4), and
x P (a, b). If Lpx, Lpy are continuous at (x, py(x), py 1(x)), Lpp(x, py(x), py 1(x)) ‰ 0, and py 1 is
continuous at x, then py 11(x) exists.



Proof. Since py P A is a minimizer of the minimization problem (4.2) and py 1 is continuous
at x, by Theorem 4.9 we find that

d

dx
Lp(x, py(x), py

1(x)) = Ly(x, py(x), py
1(x)) .

Note that
d

dx
Lp(x, py(x), py

1(x)) = lim
ϵÑ0

Lp(x+ ϵ, py(x+ ϵ), py 1(x+ ϵ)) ´ Lp(x, py(x), py
1(x))

ϵ

= lim
ϵÑ0

[Lp(x, py(x), py 1(x+ ϵ)) ´ Lp(x, py(x), py
1(x))

ϵ

+
Lp(x+ ϵ, py(x+ ϵ), py 1(x+ ϵ)) ´ Lp(x, py(x), py

1(x+ ϵ))

ϵ

]
.

By the mean value theorem,

Lp(x+ ϵ, py(x+ ϵ), py 1(x+ ϵ)) ´ Lp(x, py(x), py
1(x+ ϵ))

= Lp(x+ ϵ, py(x+ ϵ), py 1(x+ ϵ)) ´ Lp(x, py(x+ ϵ), py 1(x+ ϵ))

+ Lp(x, py(x+ ϵ), py 1(x+ ϵ)) ´ Lp(x, py(x), py
1(x+ ϵ))

= Lpx(x+ ϵθ1, py(x+ ϵ), py 1(x+ ϵ))ϵ

+ Lpy(x, py(x) + θ2(py(x+ ϵ) ´ py(x)), py 1(x+ ϵ))(py(x+ ϵ) ´ py(x))

for some θ1 = θ1(ϵ, x) and θ2 = θ2(ϵ, x) satisfying |θ1|, |θ2| ď 1. Therefore, by the continuity
of Lpx and Lpy at (x, py(x), py 1(x)) and py 1 at x,

lim
ϵÑ0

Lp(x+ ϵ, py(x+ ϵ), py 1(x+ ϵ)) ´ Lp(x, py(x), py
1(x+ ϵ))

ϵ
= Lpx(x, py(x), py

1(x)) + Lpy(x, py(x), py
1(x))py 1(x) ;

thus

lim
ϵÑ0

Lp(x, py(x), py
1(x+ ϵ)) ´ Lp(x, py(x), py

1(x))

ϵ
= Ly(x, py(x), py

1(x)) ´ Lpx(x, py(x), py
1(x)) ´ Lpy(x, py(x), py

1(x))py 1(x)
(4.5)

exists.
Suppose the contrary that py 11(x) does not exist. Then

#
␣

0 ă |ϵ| ă δ
ˇ

ˇ

py 1(x+ ϵ) ‰ py 1(x)
(

= 8 @ δ ą 0 (4.6)

for otherwise there exists δ ą 0 such that #
␣

0 ă |ϵ| ă δ
ˇ

ˇ

py 1(x+ ϵ) ‰ py 1(x)
(

ă 8; thus there
exists ϵ˚ ą 0 such that py 1(x+ ϵ) = py 1(x) for all |ϵ| ă ϵ˚ which then leads to a contradiction
that

lim
ϵÑ0

py 1(x+ ϵ) ´ py 1(x)

ϵ
= 0 .

Let tϵju
8
j=1 be sequence converging to 0 such that

lim inf
jÑ8

py 1(x+ ϵj) ´ py 1(x)

ϵj
ă lim sup

jÑ8

py 1(x+ ϵj) ´ py 1(x)

ϵj
. (4.7)



Using (4.6),
␣

j P N
ˇ

ˇ

py 1(x + ϵj) ‰ py 1(x)
(

= tjℓu
8
ℓ=1; thus by the definition of Lpp and the

continuity of py 1 at x,

lim
ℓÑ8

Lp(x, py(x), py
1(x+ ϵjℓ)) ´ Lp(x, py(x), py

1(x))

py 1(x+ ϵjℓ) ´ py 1(x)
= Lpp(x, py(x), py

1(x)) .

The condition Lpp(x, py(x), py 1(x)) ‰ 0 further implies that

lim
ℓÑ8

py 1(x+ ϵjℓ) ´ py 1(x)

Lp(x, py(x), py 1(x+ ϵjℓ)) ´ Lp(x, py(x), py 1(x))
=

1

Lpp(x, py(x), py 1(x))
.

We then conclude from (4.5) that

lim
ℓÑ8

py 1(x+ ϵjℓ) ´ py 1(x)

ϵjℓ

= lim
ℓÑ8

[
py 1(x+ ϵjℓ) ´ py 1(x)

Lp(x, py(x), py 1(x+ ϵjℓ)) ´ Lp(x, py(x), py 1(x))

Lp(x, py(x), py
1(x+ ϵjℓ)) ´ Lp(x, py(x), py

1(x))

ϵjℓ

]
=
Ly(x, py(x), py

1(x)) ´ Lpx(x, py(x), py
1(x)) ´ Lpy(x, py(x), py

1(x))py 1(x)

Lpp(x, py(x), py 1(x))
. (4.8)

If #
␣

j P N
ˇ

ˇ

py 1(x + ϵj) = py 1(x)
(

= 8, then with tjℓu
8
ℓ=1 =

␣

j P N
ˇ

ˇ

py 1(x + ϵj) = py 1(x)
(

,
(4.5) shows that

Ly(x, py(x), py
1(x)) ´ Lpx(x, py(x), py

1(x)) ´ Lpy(x, py(x), py
1(x))py 1(x)

= lim
ϵÑ0

Lp(x, py(x), py
1(x+ ϵ)) ´ Lp(x, py(x), py

1(x))

ϵ

= lim
jÑ8

Lp(x, py(x), py
1(x+ ϵj)) ´ Lp(x, py(x), py

1(x))

ϵj
= 0 ;

thus (4.8) yields that
lim
jÑ8

py 1(x+ ϵj) ´ py 1(x)

ϵj
= 0 ,

a contradiction to (4.7). Therefore, #
␣

j P N
ˇ

ˇ

py(x + ϵj) = py(x)
(

ă 8; however, this would
imply that

lim
jÑ8

py 1(x+ ϵj) ´ py 1(x)

ϵj
=
Ly(x, py(x), py

1(x)) ´ Lpx(x, py(x), py
1(x)) ´ Lpy(x, py(x), py

1(x))py 1(x)

Lpp(x, py(x), py 1(x))
,

still a contradiction to (4.7). ˝

Example 4.15. Let A =
␣

y P D1([0, 1])
ˇ

ˇ y(0) = y(1) = 0
(

. Consider the minimization
problem

inf
yPA

ż 1

0

(
y 1(x)2 ´ 1

)2
dx ;

that is, we assume L(x, y, p) = (p2 ´ 1)2. The Euler-Lagrange equation associated with this
minimization problem is

d

dx

d

dp

ˇ

ˇ

ˇ

p=y 1(x)
(p2 ´ 1)2 = 0



which, together with the fact that Lpp(x, y, p) = 12p2´4, implies that if p2 ‰
1

3
the minimizer

py satisfies
2py 12

py 11 + (py 12 ´ 1)py 11 = 0 .

Therefore, py 11(3py 12 ´ 1) = 0 on points at which py 1 is continuous and py 12 ‰
1

3
. Therefore,

py 11 = 0 if py 12 ‰
1

3
which implies that py 1 is piecewise constant. The minimizer is then

saw-tooth like function with slope ˘1, and there are only D1-minimizers.

Remark 4.16. Suppose Lpp ‰ 0 and py = argmin
zPA

I(z). If py 1 is continuous in a neighborhood
of x, then py 11 exists in a neighborhood of x and is continuous there.

Remark 4.17 (Remark on the extensions of the simplest problem of Calculus of variations).

1. Higher derivatives: The Lagrangian might involves higher order derivatives of y.
For example, we can consider the minimization problem

inf
yPA

ż b

a

L(x, y(x), y 1(x), y 11(x)) dx ,

where A =
␣

y P D2([a, b])
ˇ

ˇ y(a) = A0, y(b) = B0, y
1(a) = A1, y

1(b) = B1

(

. We note
that the corresponding test function space is N =

␣

y P D2([a, b])
ˇ

ˇ y(a) = y(b) =

y 1(a) = y 1(b) = 0
(

.

If py is a minimizer, then J(ϵ) = I(py + ϵη) attains its minimum at ϵ = 0 for
all η P N . This implies J 1(0) = 0 for all η P N , and this condition gives the weak
form of the Euler-Lagrange equation associated with this minimization problem: write
L = L(x, y, p, q),

ż b

a

[
Ly(x, py(x), py

1(x), py 11(x))η(x) + Lp(x, py(x), py
1(x), py 11(x))η 1(x)

+ Lq(x, py(x), py
1(x), py 11(x))η 11(x)

]
dx = 0 @ η P N .

2. Free ends: This is to consider the minimization problem

inf
yPD1([a,b])

ż b

a

L(x, y(x), y 1(x)) dx .

In this case, the test function space is then N = C 1([a, b]). The same argument
implies that

Lp(b, py(b), py
1(b))η(b) ´ Lp(a, py(a), py

1(a))η(a) = 0 @ η P C 1([a, b]) .

Therefore,

(a) The Euler-Lagrange/Du Bois-Reymond equation holds.

(b) Lp(b, py(b), py 1(b)) = Lp(a, py(a), py
1(a)) = 0 - this is called the natural boundary

condition.



3. Several dependent variables: Let

A =
␣

y = (y1, ¨ ¨ ¨ , yn) : [a, b] Ñ Rn ˇ
ˇ yj P D1([a, b]) for 1 ď j ď n ,y(a) = A0,y(b) = B0

(

or (when considering minimization problems with free ends)

A =
␣

y = (y1, ¨ ¨ ¨ , yn) : [a, b] Ñ Rn ˇ
ˇ yj P D1([a, b]) for 1 ď j ď n

(

” D1([a, b];Rn) ,

and L : [a, b] ˆ Rn ˆ Rn Ñ R. Consider the minimization problem

inf
yPA

ż b

a

L(x,y(x),y 1(x)) dx .

Write L = L(x, y1, ¨ ¨ ¨ , yn, p1, ¨ ¨ ¨ , pn). Then the Du Bois-Reymond equation is

d

dx
Lpi(x,y(x),y 1(x)) = Lyi(x,y(x),y 1(x)) for i = 1, 2, ¨ ¨ ¨ , n . (4.9)

When considering free ends problem, natural boundary conditions

Lpi(b, py(b), py
1(b)) = Lpi(a, py(a), py

1(a)) = 0 for i = 1, 2, ¨ ¨ ¨ , n (4.10)

have to be imposed for the minimizer y.

4. Several independent variables: Let Ω Ď Rn be bounded open set, and L : Ω ˆ

R ˆ Rn Ñ R. Consider the minimization problem

inf
yPA

ż

Ω

L(x, y(x), Dy(x)) dx ,

where A could be

(a) A =
␣

y P D1(sΩ)
ˇ

ˇ y = f on BΩ
(

(with corresponding N =
␣

η P C 1(sΩ)
ˇ

ˇ η =

0 on BΩ
(

) when considering the fixed-end problem, or

(b) A = D1(sΩ) (with corresponding N = C 1(sΩ)) when considering the free-end
problem.

Define J(ϵ) = I(py + ϵη), where py P A is a possible minimizer, η P N and α P R. The
weak form of the Euler-Lagrange equation is J 1(0) = 0.

5. Non-affine admissible set: We note that in Dido’s problem the admissible set A
is not an affine space (a translation of a vector space). In a minimization problem,
the admissible set A in general is not an affine space so there is no obvious test
function spaces N to work on. See Example 4.19 for deriving the weak form of the
Euler-Lagrange equation for minimizers.

Example 4.18 (The minimal surface). Suppose that Ω Ď R2 is a bounded set with bound-
ary parameterized by (x(t), y(t)) for t P I, and C Ď R3 is a closed curve parameterized by
(x(t), y(t), f(x(t), y(t))) for some given function f . We want to find a surface having C as



its boundary with minimal surface area. Then the goal is to find a function u with the
property that u = f on BΩ that minimizes the functional

A(w) =

ż

Ω

a

1 + |∇w|2 dA .

Let φ P C 1(Ω), and define

δA(u;φ) = lim
tÑ0

A(u+ ϵφ) ´ A(u)

ϵ
=

ż

Ω

∇u ¨ ∇φ
a

1 + |∇u|2
dx .

If u minimize A, then δA(u;φ) = 0 for all φ P C 1(Ω) satisfying φ = 0 on BΩ. Assuming
that u P C 2(Ω), by the divergence theorem (Theorem 3.31) we find that u satisfies

div
( ∇u
a

1 + |∇u|2

)
= 0 ,

or expanding the bracket using the Leibnitz rule, we obtain the minimal surface equation

(1 + u2y)uxx ´ 2uxuyuxy + (1 + u2x)uyy = 0 @ (x, y) P Ω . (4.11)

Example 4.19 (Isoperimetric Inequality - revisit). We rephrase Dido’s problem as finding
a simply closed curve C enclosing a fixed number A of area with shortest perimeter. Let

A =
!

r(t) = (x(t), y(t)) P D1([0, 1])
ˇ

ˇ

ˇ
r(0) = r(1) ,

ż 1

0
(xẏ ´ yẋ)dt = 2A

)

and I(r) = inf
rPA

ż 1

0
|r 1(t)| dt. We would like to study the minimization problem inf

rPA
I(r).

The difficulty of this particular formulation is that A is not an affine space so there
is “no” corresponding test functions space to compute the first variation as before. To see
how we derive the Euler-Lagrange equation for this minimization problem for a minimizer
pr = (px, py), we introduce a family of curves r(t; ϵ) = (x(t; ϵ), y(t; ϵ)) P A, where ϵ P R is a
parameter that will be passed to the limit, such that

1. r(t; 0) = pr(t); 2. r(0; ϵ) = r(1; ϵ); 3. r is also differentiable in ϵ.

Denote δr(t) = (δx(t), δy(t)) =
d

dϵ

ˇ

ˇ

ˇ

ϵ=0
r(t; ϵ). Since r P A,

d

dϵ

ˇ

ˇ

ˇ

ϵ=0

ż 1

0

[
x(t; ϵ)ẏ(t; ϵ) ´ y(t; ϵ)ẋ(t; ϵ)

]
dt = 0

which implies that δr satisfies
ż 1

0

[
(δx)ṗy + px ˙(δy) ´ (δy)ṗx ´ py ˙(δx)

]
dt = 0 . (4.12)

For each possible minimizer pr, the relation above induces a linear vector space

N
pr =

!

δr = (δx, δy) P C 1([0, 1])
ˇ

ˇ

ˇ

ż 1

0

[
px ˙(δy) ´ py ˙(δx)

]
dt = 0

)

.



Now we look for a minimizer pr P C 2([0, 1]). We note that Remark 4.2 implies that if we
are able to find a minimizer in C 2([0, 1]) (thus a C 1-minimizer), it must also be a minimizer
in D1([0, 1]). Since pr P C 2([0, 1]) is a minimizer, the function J(ϵ) ” I(r(t; ϵ)) attains its
minimum at ϵ = 0. This yields that J 1(0) = 0 or more precisely,

ż 1

0

pr 1(t) ¨ (δr) 1(t)

|pr 1(t)|
dt = 0 ,

where we note that δr P N
pr . In other words, pr satisfies

ż 1

0

pr 1(t)

|pr 1(t)|
¨ (δr) 1(t) dt = 0 @ δr P N

pr , (4.13)

and Lemma 4.8 implies that there exists λ1, λ2, µ1, µ2 P R such that

pr 1(t)

|pr 1(t)|
=

(
´λ1py(t) + µ1, λ2px(t) + µ2

)
.

Since pr = (px, py) P C 2([0, 1]), we differentiate the equation above and obtain that(
pr 1(t)

|pr 1(t)|

)1

=
(

´λ1py
1(t), λ2px

1(t)
)
.

Therefore, taking the inner product of the equation above with the unit tangent vector pr 1

|pr 1
|
,

we find that

0 =
(
pr 1(t)

|pr 1(t)|

)
¨

(
pr 1(t)

|pr 1(t)|

)1

=
(

´λ1py
1(t), λ2px

1(t)
)

¨

(
pr 1(t)

|pr 1(t)|

)
= (λ2 ´ λ1)

px 1(t)py 1(t)

|pr 1(t)|
@ t P [0, 1]

which implies that λ2 = λ1; thus

pr 1(t)

|pr 1(t)|
= λ(´py(t), px(t)

)
+ (µ1, µ2) .

Note that λ ‰ 0 for otherwise the unit tangent vector is constant which implies that pr is a
parametrization of a straight line. Therefore, with rr =

(
rx(t), ry(t)

)
denoting the vector(

rx(t), ry(t)
)
=

(
px(t) +

µ2
λ
, py(t) ´

µ1
λ

)
,

we have
rr 1(t)

|rr 1(t)|
= λ(´ry(t), rx(t)

)
.

Finally, taking the inner product of the equation above with the (position) vector rr, we
conclude that

d

dt

ˇ

ˇ

rr(t)
ˇ

ˇ

2
= 0 .

Therefore, the closed curve having fixed length and enclosing the largest area must be a
circle.
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