數學流體力學之理論與計算
 Homework Assignment 4

Due date：Prob．1－3 on Nov． 16.

Part I：Theoretical assignments

Problem 1．Show that there exists a generic constant C such that

$$
\|u v\|_{H^{3}\left(\mathbb{T}^{3}\right)} \leq C\left[\|u\|_{L^{\infty}\left(\mathbb{T}^{3}\right)}\|v\|_{H^{3}\left(\mathbb{T}^{3}\right)}+\|u\|_{H^{3}\left(\mathbb{T}^{3}\right)}\|v\|_{L^{\infty}\left(\mathbb{T}^{3}\right)}\right] \quad \forall u, v \in H^{3}\left(\mathbb{T}^{3}\right) .
$$

Problem 2．Define the notion of weak solution to the following elliptic equation

$$
u-\Delta u=f \quad \text { in } \quad \mathbb{T}^{\mathrm{n}}
$$

and show that there exists a unique weak solution $u \in H^{1}\left(\mathbb{T}^{\mathrm{n}}\right)$ for all $f \in L^{2}\left(\mathbb{T}^{\mathrm{n}}\right)$ ．

Part II：Computational assignments

Problem 3．Suppose that＂position＂and a（discrete）vector field＂u＿val＂（which is defined on each intersection point and time independent）are given．Write a matlab ${ }^{\circledR}$ program ＂plot＿trajectory＂with inputs＂starting＿point＂and＂end＿time＂so that the output plots the trajectory of the function $x(t)$ ，where $x(t)$ solves

$$
\begin{aligned}
& x^{\prime}(t)=u(x(t)) \quad \text { in } \quad[0, \text { end_time }], \\
& x(0)=\text { starting_point }
\end{aligned}
$$

and u is the linear interpolation of the discrete vector field u_{-}val．

