Theorem 1.41. If f is continuous at b and $\lim_{x\to a} g(x) = b$, then $\lim_{x\to a} f(g(x)) = f(b)$. In other words,

$$\lim_{x \to a} (f \circ g)(x) = \lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right).$$

Proof. Let $\varepsilon > 0$ be given. Since f is continuous at b, there exists $\delta_1 > 0$ such that

$$|f(x) - f(b)| < \varepsilon$$
 whenever $|y - b| < \delta_1$.

Fix such a δ_1 . Since $\lim_{x \to a} g(x) = b$, there exists $\delta > 0$ such that

$$|g(x) - b| < \delta_1$$
 whenever $0 < |x - a| < \delta$.

Therefore, if $0 < |x - a| < \delta$, we must have $|g(x) - b| < \delta_1$ so $|f(g(x)) - f(b)| < \varepsilon$. This shows that $\lim_{x \to a} f(g(x)) = f(b)$.

Lemma 1.42. Let x be a real number and $0 \le x < \frac{\pi}{2}$. Then $\sin x \le x \le \tan x$. (1.8.1)

Moreover,

$$|\sin x| \le |x| \qquad \forall x \in \mathbb{R}. \tag{1.8.2}$$

Proof. Inequality (1.8.1) follows from the following figure

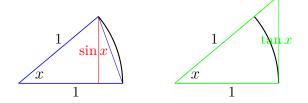


Figure 1.2: The area of the sector is larger than the area of the blue triangle but is smaller than the green triangle.

which shows $\frac{1}{2}\sin x \leq \frac{1}{2}x \leq \frac{1}{2}\tan x$. This establishes (1.8.1).

To see (1.8.2), by the fact that $|\sin x| \leq 1$ it suffice to show that

$$|\sin x| \le |x| \quad (\text{or } -|x| \le \sin x \le |x|) \qquad \forall |x| < \frac{\pi}{2}.$$

Note that by (1.8.1) the inequality above holds for all $x \in [0, \frac{\pi}{2})$. The validity of the inequality above for negative x follows from replacing x by -x in the inequality.

Theorem 1.43. The sine and cosine function are continuous.

Proof. This is a direct consequence of the identities

$$\sin x - \sin a = 2\sin \frac{x-a}{2}\cos \frac{x+a}{2}$$
 and $\cos x - \cos a = 2\sin \frac{x-a}{2}\sin \frac{x+a}{2}$

and the Squeeze Theorem.