Exercise Problem Sets 14

May 31. 2024

Problem 1. Evaluate the double integral $\iint_{R} \arctan \frac{y}{x} d A$ using the polar coordinate, where

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leqslant x^{2}+y^{2} \leqslant 4,0 \leqslant y \leqslant x\right\} .
$$

Problem 2. Evaluate the triple integral $\iiint_{D} x \exp \left(x^{2}+y^{2}+z^{2}\right) d V$, where D is the portion of the unit ball $x^{2}+y^{2}+z^{2} \leqslant 1$ that lies in the first octant.
Problem 3. Evaluate the triple integral $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where D is the region lying above the cone $z=\sqrt{x^{2}+y^{2}}$ and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.

Problem 4. Use the cylinder coordinate to find the volume of the ball $x^{2}+y^{2}+z^{2}=a^{2}$.
Problem 5. Use the spherical coordinate to find the volume of the cylindricality $x^{2}+y^{2}=r^{2}$, where $0 \leqslant z \leqslant h$.

Problem 6. Compute the volume of D given below using triple integrals in cylindrical coordinates.
(1) D is the solid right cylinder whose base is the region in the $x y$-plane that lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$ and whose top lies in the plane $z=4$.

(2) D is the solid right cylinder whose base is the region between the circles $r=\cos \theta$ and $r=2 \cos \theta$ and whose top lies in the plane $z=3-y$.

Problem 7. Compute the volume of D given below using triple integrals in spherical coordinates.
(1) D is the solid between the sphere $\rho=\cos \phi$ and the hemisphere $\rho=2, z \geqslant 0$.

(2) D is the solid bounded below by the sphere $\rho=2 \cos \phi$ and above by the cone $z=\sqrt{x^{2}+y^{2}}$.

Problem 8. Convert the integral

$$
\int_{-1}^{1}\left[\int_{0}^{\sqrt{1-y^{2}}}\left(\int_{0}^{x}\left(x^{2}+y^{2}\right) d z\right) d x\right] d y
$$

to an equivalent integral in cylindrical coordinates and evaluate the result.
Problem 9. Find the integrals given below with specific change of variables.
(1) Find $\int_{0}^{2}\left(\int_{\frac{y}{2}}^{\frac{y+4}{2}} y^{3}(2 x-y) e^{(2 x-y)^{2}} d x\right) d y$ using change of variables $x=u+\frac{1}{2} v, y=v$.
(2) Find $\iint_{[0,1] \times[0,1]} \frac{1}{(1+x y) \ln (x y)} d A$ by making the change of variables $u=x y$ and $v=y$.
(3) Find $\int_{1}^{2}\left(\int_{\frac{1}{y}}^{y}\left(x^{2}+y^{2}\right) d x\right) d y+\int_{2}^{4}\left(\int_{\frac{y}{4}}^{\frac{4}{y}}\left(x^{2}+y^{2}\right) d x\right) d y$ using change of variables $x=\frac{u}{v}, y=u v$.
(4) Find $\int_{0}^{1}\left(\int_{0}^{2 \sqrt{1-x}} \sqrt{x^{2}+y^{2}} d y\right) d x$ using change of variables $x=u^{2}-v^{2}, y=2 u v$.
(5) Let R be the region in the first quadrant of the $x y$-plane bounded by the hyperbolas $x y=1$, $x y=9$ and the lines $y=x, y=4 x$. Find $\iint_{R}\left(\sqrt{\frac{y}{x}}+\sqrt{x y}\right) d A$ using the change of variables $x=\frac{u}{v}, y=u v$.
(6) Let D be the solid region in $x y z$-space defined by

$$
D=\{(x, y, z) \mid 1 \leqslant x \leqslant 2,0 \leqslant x y \leqslant 2,0 \leqslant z \leqslant 1\} .
$$

Find $\iiint_{D}\left(x^{2} y+3 x y z\right) d V$ using change of variables $u=x, v=x y, w=3 z$.

Problem 10. Evaluate the double integral $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$, where R is rectangle enclosed by the lines $x-y=0, x-y=2, x+y=0$, and $x+y=3$.

Problem 11. Let f be continuous on $[0,1]$ and let R be the triangular region with vertices $(0,0)$, $(1,0)$, and $(0,1)$. Show that

$$
\iint_{R} f(x+y) d A=\int_{0}^{1} u f(u) d u
$$

Problem 12. Let A be the area of the region in the first quadrant bounded by the line $y=\frac{1}{2} x$, the x-axis, and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$. Find the positive number m such that A is equal to the area of the region in the first quadrant bounded by the line $y=m x$, the y-axis, and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$. Hint: Try to make change of variables so that the computation of the area of the region in the first quadrant bounded by the line $y=m x$, the y-axis, and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$ looks the same as the former one.

Problem 13. Suppose that $\boldsymbol{c} \in \mathbb{R}^{3}$ is a unit vector; that is, $\|\boldsymbol{c}\|=1$. Show that

$$
\iiint_{B(\mathbf{0}, r)} \frac{\sin \|\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \cos (\boldsymbol{c} \cdot \boldsymbol{x}) d V=2 \pi r-\pi \sin (2 r)
$$

where $B(\mathbf{0}, r)$ is the ball centered at the origin with radius r, by completing the following steps.
(1) Let O be an orthogonal 3×3 matrix (that is, $\mathrm{O}^{\mathrm{T}} \mathrm{O}=\mathrm{OO}^{\mathrm{T}}=\mathrm{I}_{3 \times 3}$). Show that the change of variable $\boldsymbol{x}=\mathrm{O} \boldsymbol{y}$ implies that

$$
\iiint_{B(\mathbf{0}, r)} \frac{\sin \|\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \cos (\boldsymbol{c} \cdot \boldsymbol{x}) d V=\iiint_{B(\mathbf{0}, r)} \frac{\sin \|\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \cos \left(\mathrm{O}^{\mathrm{T}} \boldsymbol{c} \cdot \boldsymbol{x}\right) d V
$$

Hint: What is the Jacobian $\frac{\partial\left(x_{1}, x_{2}, x_{3}\right)}{\partial\left(y_{1}, y_{2}, y_{3}\right)}$?
(2) Use the fact that there exists an orthogonal 3×3 matrix O such that $\mathrm{O}^{\mathrm{T}} \boldsymbol{c}=(0,0,1)^{\mathrm{T}}$ to conclude that

$$
\begin{equation*}
\iiint_{B(\mathbf{0}, r)} \frac{\sin \|\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \cos (\boldsymbol{c} \cdot \boldsymbol{x}) d V=\iiint_{B(\mathbf{0}, r)} \frac{\sin \|\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \cos x_{3} d V . \tag{0.1}
\end{equation*}
$$

(3) Use the spherical coordinates to computer the triple integral on the right-hand side of (0.1) (in the order $d \theta d \phi d r)$ and obtain the desired result.

