Exercise Problem Sets 12

May 19. 2024

Problem 1. Find the surface area for the portion of the surface $z=x y$ that is inside the cylinder $x^{2}+y^{2}=1$.

Problem 2. Let Σ be a parametric surface parameterized by

$$
\boldsymbol{r}(u, v)=X(u, v) \boldsymbol{i}+Y(u, v) \boldsymbol{j}+Z(u, v) \boldsymbol{k}, \quad(u, v) \in R .
$$

Define $E=\boldsymbol{r}_{u} \cdot \boldsymbol{r}_{u}, F=\boldsymbol{r}_{u} \cdot \boldsymbol{r}_{v}$ and $G=\boldsymbol{r}_{v} \cdot \boldsymbol{r}_{v}$. Show that

$$
\left\|\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right\|^{2}=E G-F^{2} .
$$

Hint: You can try to make use of $\varepsilon_{i j k}$, the permutation symbol.
Proof. Write $\boldsymbol{r}=\sum_{i=1}^{3} R_{i} \boldsymbol{e}_{i}$, where $R_{1}=X, R_{2}=Y, R_{3}=Z$ and $\boldsymbol{e}_{1}=\boldsymbol{i}, \boldsymbol{e}_{2}=\boldsymbol{j}, \boldsymbol{e}_{3}=\boldsymbol{k}$, . Then

$$
\boldsymbol{r}_{u} \equiv \sum_{j=1}^{3} \frac{\partial R_{j}}{\partial u} \boldsymbol{e}_{j} \quad \text { and } \quad \boldsymbol{r}_{v} \equiv \sum_{k=1}^{3} \frac{\partial R_{k}}{\partial v} \boldsymbol{e}_{k} .
$$

By the fact that

$$
(\boldsymbol{u} \times \boldsymbol{v})=\sum_{i, j, k=1}^{3} \varepsilon_{i j k} u_{j} v_{k} \boldsymbol{e}_{i} \quad \text { if } \boldsymbol{u}=\sum_{j=1}^{3} u_{j} \boldsymbol{e}_{j}, \boldsymbol{v}=\sum_{k=1}^{3} v_{k} \boldsymbol{e}_{k},,
$$

we find that

$$
\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}=\sum_{i, j, k=1}^{3} \varepsilon_{i j k} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v} \boldsymbol{e}_{i}
$$

so that

$$
\begin{aligned}
\left\|\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right\|^{2} & =\left(\sum_{i, j, k=1}^{3} \varepsilon_{i j k} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v} \boldsymbol{e}_{i}\right) \cdot\left(\sum_{\ell, r, s=1}^{3} \varepsilon_{\ell r s} \frac{\partial R_{r}}{\partial u} \frac{\partial R_{s}}{\partial v} \boldsymbol{e}_{\ell}\right) \\
& =\sum_{i, j, k, \ell, r, s=1}^{3} \varepsilon_{i j k} \varepsilon_{\ell r s} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v} \frac{\partial R_{r}}{\partial u} \frac{\partial R_{s}}{\partial v}\left(\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{\ell}\right) \\
& =\sum_{i, j, k, r, s=1}^{3} \varepsilon_{i j k} \varepsilon_{i r s} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v} \frac{\partial R_{r}}{\partial u} \frac{\partial R_{s}}{\partial v} .
\end{aligned}
$$

Using the identity $\sum_{i=1}^{3} \varepsilon_{i j k} \varepsilon_{i r s}=\delta_{j r} \delta_{k s}-\delta_{j s} \delta_{k r}$ (here δ.. denotes the Kronecker delta) we conclude that

$$
\begin{aligned}
\left\|\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right\|^{2} & =\sum_{j, k, r, s=1}^{3}\left(\sum_{i=1}^{3} \varepsilon_{i j k} \varepsilon_{i r s}\right) \frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v} \frac{\partial R_{r}}{\partial u} \frac{\partial R_{s}}{\partial v}=\sum_{j, k, r, s=1}^{3}\left(\delta_{j r} \delta_{k s}-\delta_{j s} \delta_{k r}\right) \frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v} \frac{\partial R_{r}}{\partial u} \frac{\partial R_{s}}{\partial v} \\
& =\sum_{j, k=1}^{3}\left[\frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v}-\frac{\partial R_{j}}{\partial u} \frac{\partial R_{k}}{\partial v} \frac{\partial R_{k}}{\partial u} \frac{\partial R_{j}}{\partial v}\right] \\
& =\left(\sum_{j=1}^{3} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{j}}{\partial u}\right)\left(\sum_{k=1}^{3} \frac{\partial R_{k}}{\partial v} \frac{\partial R_{k}}{\partial v}\right)-\left(\sum_{j=1}^{3} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{j}}{\partial v}\right)\left(\sum_{k=1}^{3} \frac{\partial R_{k}}{\partial u} \frac{\partial R_{k}}{\partial v}\right) .
\end{aligned}
$$

The conclusion then follows from the fact that

$$
\sum_{j=1}^{3} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{j}}{\partial u}=\boldsymbol{r}_{u} \cdot \boldsymbol{r}_{u}=E, \quad \sum_{k=1}^{3} \frac{\partial R_{k}}{\partial v} \frac{\partial R_{k}}{\partial v}=\boldsymbol{r}_{v} \cdot \boldsymbol{r}_{v}=G, \quad \sum_{j=1}^{3} \frac{\partial R_{j}}{\partial u} \frac{\partial R_{j}}{\partial v}=\boldsymbol{r}_{u} \cdot \boldsymbol{r}_{v}=F .
$$

Problem 3. Let $k>0$ be a constant. Find the surface area of the cone $z=k \sqrt{x^{2}+y^{2}}$ that lies above the region $R=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 2 y\right\}$ in the $x y$-plane by the following methods:
(1) Use the formula $\iint_{R} \sqrt{1+\|(\nabla f)(x, y)\|^{2}} d A$ directly.
(2) Find a parametrization of the cone above using r, θ (from the polar coordinate) as the parameters and make use of the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{r} \times \boldsymbol{r}_{\theta}\right)(r, \theta)\right\| d(r, \theta)$.
(3) Find a parametrization of the cone above using ρ, θ (from the spherical coordinate) as the parameters and make use of the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{\rho} \times \boldsymbol{r}_{\theta}\right)(\rho, \theta)\right\| d(\rho, \theta)$.
Problem 4. Let Σ be the surface formed by rotating the curve

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=\cos z, y=0,-\frac{\pi}{2} \leqslant z \leqslant \frac{\pi}{2}\right\}
$$

about the z-axis. Find a parametrization for Σ and compute its surface area.
Problem 5. The figure below shows the surface created when the cylinder $y^{2}+z^{2}=1$ intersects the cylinder $x^{2}+z^{2}=1$. Let Σ be the part shown in the figure.

(1) Find the area of Σ using the formula $\iint_{R} \sqrt{1+\|(\nabla f)(x, y)\|^{2}} d A$.
(2) Parameterize Σ using θ, z as parameters (from the cylindrical coordinate) and find the area of this surface using the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{z}\right)(\theta, z)\right\| d(\theta, z)$.
(3) Parameterize Σ using θ, ϕ as parameters (from the spherical coordinate) and find the area of this surface using the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi}\right)(\theta, \phi)\right\| d(\theta, \phi)$.
(4) Find the volume of this intersection using triple integrals.

Proof. Note that the intersection of the blue $\left(x^{2}+z^{2}=1\right)$ and the brown $\left(y^{2}+z^{2}=1\right)$ occurs at $x= \pm y$.
(1) In this case we view the upper part of Σ as the graph of the function $z=f(x, y)=\sqrt{1-x^{2}}$ on the set $R=\{(x, y) \mid 0 \leqslant x \leqslant 1,-x \leqslant y \leqslant x\}$. Since

$$
(\nabla f)(x, y)=\left(\frac{-x}{\sqrt{1-x^{2}}}, 0\right)
$$

using the formula for the surface area we obtain that the surface area of Σ is

$$
\begin{aligned}
2 \iint_{R} \sqrt{1+\|(\nabla f)(x, y)\|^{2}} d A & =2 \int_{0}^{1}\left(\int_{-x}^{x} \sqrt{1+\frac{x^{2}}{1-x^{2}}} d y\right) d x=2 \int_{0}^{1}\left(\int_{-x}^{x} \frac{1}{\sqrt{1-x^{2}}} d y\right) d x \\
& =4 \int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x=-\left.4 \sqrt{1-x^{2}}\right|_{x=0} ^{x=1}=4
\end{aligned}
$$

(2) Introduce the cylindrical coordinate (r, θ, y), where (r, θ) is the polar coordinate on $x z$-plane (θ is a angle between the position (on $x z$-plane) vector and the x-axis). Then Σ can be parameterized by

$$
\Sigma=\{\boldsymbol{r} \mid \boldsymbol{r}(\theta, y)=\cos \theta \boldsymbol{i}+y \boldsymbol{j}+\sin \theta \boldsymbol{k},(\theta, y) \in \mathrm{D}\}
$$

where $\mathrm{D}=\left\{(\theta, y) \in[-\pi, \pi] \times \mathbb{R} \left\lvert\,-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}\right.,-\cos \theta \leqslant y \leqslant \cos \theta\right\}$ (where the range of y for given θ is obtained by that $\left.-\sqrt{1-z^{2}} \leqslant y \leqslant \sqrt{1-z^{2}}\right)$. Since

$$
\boldsymbol{r}_{\theta}(\theta, y)=-\sin \theta \boldsymbol{i}+\cos \theta \boldsymbol{k} \quad \text { and } \quad \boldsymbol{r}_{y}(\theta, y)=\boldsymbol{j}
$$

we have $\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{y}\right)(\theta, y)=-\cos \theta \boldsymbol{i}-\sin \theta \boldsymbol{k}$; thus using the formula for the surface area of parametric surfaces we obtain that the surface area of Σ is

$$
\iint_{\mathrm{D}}\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{y}\right)(\theta, y)\right\| d(\theta, y)=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\cos \theta}^{\cos \theta} d y d \theta=2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta d \theta=4
$$

(3) Introduce the spherical coordinate (ρ, θ, ϕ), where θ is the angle in (2) and $\frac{\pi}{2}-\phi$ is the angle between the position vector (in space) and the y-axis. Then a point (x, y, z) in space can be expressed as

$$
x=\rho \cos \theta \cos \phi, \quad y=\rho \sin \phi, \quad z=\rho \sin \theta \cos \phi \quad \theta \in[-\pi, \pi], \phi \in[-\pi / 2, \pi / 2] .
$$

For a fixed θ and ϕ, a point on Σ satisfies

$$
x^{2}+z^{2}=1 \quad \Leftrightarrow \quad \rho^{2} \cos ^{2} \phi=1 \quad \Leftrightarrow \quad \rho=\frac{1}{\cos \phi}=\sec \phi
$$

Therefore, Σ can be parameterized by

$$
\Sigma=\{\boldsymbol{r} \mid \boldsymbol{r}(\theta, \phi)=\cos \theta \boldsymbol{i}+\tan \phi \boldsymbol{j}+\sin \theta \boldsymbol{k},(\theta, y) \in \mathrm{D}\}
$$

where $\mathrm{D}=\left\{(\theta, \phi) \in[-\pi, \pi] \times[-\pi / 2, \pi / 2] \left\lvert\,-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}\right.,-\arctan \cos \theta \leqslant \phi \leqslant \arctan \cos \theta\right\}$. Since

$$
\boldsymbol{r}_{\theta}(\theta, \phi)=-\sin \theta \boldsymbol{i}+\cos \theta \boldsymbol{k} \quad \text { and } \quad r_{\phi}(\theta, \phi)=\sec ^{2} \phi \boldsymbol{j}
$$

we have $\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi}\right)(\theta, \phi)=-\sec ^{2} \phi(\cos \theta \boldsymbol{i}+\sin \theta \boldsymbol{k})$; thus using the formula for the surface area of parametric surfaces we obtain that the surface area of Σ is

$$
\begin{aligned}
\iint_{\mathrm{D}} \frac{1}{\sin ^{2} \phi} d(\theta, \phi) & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\arctan \cos \theta}^{\arctan \cos \theta} \sec ^{2} \phi d \phi d \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\left.\tan \phi\right|_{\phi=-\arctan \cos \theta} ^{\phi=\arctan \cos \theta}\right) d \theta \\
& =2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta d \theta=4
\end{aligned}
$$

(4) Under the setting of (1), we find that the volume of this intersection is

$$
\begin{align*}
8 \iint_{R} f(x, y) d A & =8 \int_{0}^{1}\left(\int_{-x}^{x} \sqrt{1-x^{2}} d y\right) d x=16 \int_{0}^{1} x \sqrt{1-x^{2}} d x \\
& =-\left.\frac{16}{3}\left(1-x^{2}\right)^{\frac{3}{2}}\right|_{x=0} ^{x=1}=\frac{16}{3} \tag{ㅁ}
\end{align*}
$$

Problem 6. Let Σ be the surface obtained by rotating the smooth curve $y=f(x), a \leqslant x \leqslant b$ about the x-axis, where $f(x)>0$.

1. Show that

$$
\boldsymbol{r}(x, \theta)=x \boldsymbol{i}+f(x) \cos \theta \boldsymbol{j}+f(x) \sin \theta \boldsymbol{k}, \quad(x, \theta) \in[a, b] \times[0,2 \pi]
$$

is a parametrization of Σ, where θ is the angle of rotation about the x-axis (see the accompanying figure).

2. Show that the surface area of Σ is

$$
\int_{a}^{b} 2 \pi f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

using the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{r} \times \boldsymbol{r}_{\theta}\right)(r, \theta)\right\| d(r, \theta)$.
Proof. 2. We compute \boldsymbol{r}_{x} and \boldsymbol{r}_{θ} and obtain that

$$
\boldsymbol{r}_{x}(x, \theta)=\boldsymbol{i}+f^{\prime}(x) \cos \theta \boldsymbol{j}+f^{\prime}(x) \sin \theta \boldsymbol{k} \quad \text { and } \quad \boldsymbol{r}_{\theta}(x, \theta)=-f(x) \sin \theta \boldsymbol{i}+f(x) \cos \theta \boldsymbol{k}
$$ thus

$$
\left(\boldsymbol{r}_{x} \cdot \boldsymbol{r}_{x}\right)(x, \theta)=1+f^{\prime}(x)^{2}, \quad\left(\boldsymbol{r}_{x} \cdot \boldsymbol{r}_{\theta}\right)(x, \theta)=0, \quad\left(\boldsymbol{r}_{\theta} \cdot \boldsymbol{r}_{\theta}\right)(x, \theta)=f(x)^{2}
$$

By problem 2, we have

$$
\left\|\left(\boldsymbol{r}_{x} \times \boldsymbol{r}_{\theta}\right)(x, \theta)\right\|^{2}=f(x)^{2}\left[1+f^{\prime}(x)^{2}\right]
$$

so that using formula of the surface area of parametric surfaces we find that the surface area of Σ is

$$
\begin{aligned}
\iint_{[a, b] \times[0,2 \pi]}\left\|\left(\boldsymbol{r}_{x} \times \boldsymbol{r}_{\theta}\right)(x, \theta)\right\| d(x, \theta) & =\int_{a}^{b}\left(\int_{0}^{2 \pi} f(x) \sqrt{1+f^{\prime}(x)^{2}} d \theta d x\right. \\
& =2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
\end{aligned}
$$

Problem 7. Let S be the subset of the upper hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ enclosed by the curve C shown in the figure below

where each point of C corresponds to some point $\left(\cos t \sin t, \sin ^{2} t, \cos t\right)$ with $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Find the surface of S via the following steps.
(1) The surface S can be parameterized by

$$
S=\{\boldsymbol{r} \mid \boldsymbol{r}=\cos \theta \sin \phi \boldsymbol{i}+\sin \theta \sin \phi \boldsymbol{j}+\cos \phi \boldsymbol{k} \text { for some }(\theta, \phi) \in D\}
$$

Find the domain D inside the rectangle $[0,2 \pi] \times[0, \pi]$.
(2) Find the surface area of S using the formula $\iint_{D}\left\|\left(\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi}\right)(\theta, \phi)\right\| d(\theta, \phi)$.

Proof. (1) Let $\mathrm{R}=(0,2 \pi) \times(0, \pi)$ and $\psi: \mathrm{R} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\psi(\theta, \phi)=(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
$$

and we would like to find a region $D \subseteq \mathrm{R}$ such that $\psi(D)=\Sigma$.
Suppose that $\gamma(t)=(\theta(t), \varphi(t)), t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, is a curve in R such that $(\psi \circ \gamma)(t)=\boldsymbol{r}(t)$. Then for $t \in\left[0, \frac{\pi}{2}\right]$, the identity $\cos t=\cos \phi(t)$ implies that $\phi(t)=t$; thus the identities $\cos t \sin t=\cos \theta(t) \sin \phi(t)$ and $\sin t \sin t=\sin \theta(t) \sin \phi(t)$ further imply that $\theta(t)=t$.
On the other hand, for $t \in\left[-\frac{\pi}{2}, 0\right]$, the identity $\cos t=\cos \phi(t)$, where $\phi(t) \in(0, \pi)$, implies that $\phi(t)=-t$; thus the identities $\cos t \sin t=\cos \theta(t) \sin \phi(t)$ and $\sin t \sin t=\sin \theta(t) \sin \phi(t)$ further imply that $\theta(t)=\pi+t$.

(2) First we compute $\left\|\left(\psi_{\theta} \times \psi_{\phi}\right)(\theta, \phi)\right\|$ as follows:

$$
\begin{aligned}
\left\|\left(\psi_{\theta} \times \psi_{\phi}\right)(\theta, \phi)\right\|^{2} & =\|(-\sin \theta \sin \phi, \cos \theta \sin \phi, 0) \times(\cos \theta \cos \phi, \sin \theta \cos \phi,-\sin \phi)\|^{2} \\
& =\left\|\left(-\cos \theta \sin ^{2} \phi,-\sin \theta \sin ^{2} \phi,-\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \sin \phi \cos \phi\right)\right\|^{2} \\
& =\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \sin ^{4} \phi+\sin ^{2} \phi \cos ^{2} \phi=\sin ^{2} \phi .
\end{aligned}
$$

Therefore, using the formula for the surface area of parametric surfaces we obtain that the surface area of S is

$$
\begin{aligned}
\iint_{D}\left\|\left(\psi_{\theta} \times \psi_{\phi}\right)(\theta, \phi)\right\| d(\theta, \phi) & =\int_{0}^{\frac{\pi}{2}} \int_{\phi}^{\pi-\phi} \sin \phi d \theta d \phi=\int_{0}^{\frac{\pi}{2}}(\pi-2 \phi) \sin \phi d \phi \\
& =\left.(-\pi \cos \phi+2 \phi \cos \phi-2 \sin \phi)\right|_{\phi=0} ^{\phi=\frac{\pi}{2}}=\pi-2
\end{aligned}
$$

Remark 0.1. Another way to parameterize S is to view S as the graph of function $z=\sqrt{1-x^{2}-y^{2}}$ over D, where D is the projection of S along z-axis onto $x y$-plane. We note that the boundary of D can be parameterized by

$$
\widetilde{\boldsymbol{r}}(t)=(\cos t \sin t, \sin t \sin t), \quad t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Let $(x, y) \in \partial D$. Then $x^{2}+y^{2}=y$; thus S can also be parameterized by $\psi: D \rightarrow \mathbb{R}^{3}$, where

$$
\psi(x, y)=\left(x, y, \sqrt{1-x^{2}-y^{2}}\right) \quad \text { and } \quad D=\left\{(x, y) \mid x^{2}+y^{2} \leqslant y\right\} .
$$

Therefore, with f denoting the function $f(x, y)=\sqrt{1-x^{2}-y^{2}}$, the surface area of S can be computed by

$$
\begin{aligned}
\int_{D} \sqrt{1+\|(\nabla f)(x, y)\|^{2}} d \mathbb{A} & =\int_{0}^{1} \int_{-\sqrt{y-y^{2}}}^{\sqrt{y-y^{2}}} \frac{1}{\sqrt{1-x^{2}-y^{2}}} d x d y \\
& =\left.\int_{0}^{1} \arcsin \frac{x}{\sqrt{1-y^{2}}}\right|_{x=-\sqrt{y-y^{2}}} ^{x=\sqrt{y-y^{2}}} d y=2 \int_{0}^{1} \arcsin \frac{\sqrt{y}}{\sqrt{1+y}} d y
\end{aligned}
$$

thus making a change of variable $y=\tan ^{2} \theta$ we conclude that

$$
\text { the surface area of } \begin{aligned}
S & =2 \int_{0}^{\frac{\pi}{4}} \arcsin \frac{\tan \theta}{\sec \theta} d\left(\tan ^{2} \theta\right)=2 \int_{0}^{\frac{\pi}{4}} \theta d\left(\tan ^{2} \theta\right) \\
& =2\left[\left.\theta \tan ^{2} \theta\right|_{\theta=0} ^{\theta=\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \tan ^{2} \theta d \theta\right] \\
& =2\left[\frac{\pi}{4}-\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} \theta-1\right) d \theta\right]=2\left[\frac{\pi}{4}-\left.(\tan \theta-\theta)\right|_{\theta=0} ^{\theta=\frac{\pi}{4}}\right] \\
& =2\left[\frac{\pi}{4}-\left(1-\frac{\pi}{4}\right)\right]=\pi-2 .
\end{aligned}
$$

