Exercise Problem Sets 11

May 10. 2024

Problem 1. Evaluate the following iterated integrals.
(1) $\int_{-1}^{1}\left(\int_{0}^{1} y e^{x^{2}+y^{2}} d x\right) d y$
(2) $\int_{0}^{2}\left(\int_{y}^{\sqrt{8-y^{2}}} \sqrt{x^{2}+y^{2}} d x\right) d y$
(3) $\int_{0}^{1}\left(\int_{\sqrt{y}}^{1} e^{x^{3}} d x\right) d y$
(4) $\int_{0}^{1}\left(\int_{y}^{1} \frac{1}{1+x^{4}} d x\right) d y$
(5) $\int_{0}^{4}\left(\int_{\frac{x}{2}}^{2} \sin \left(y^{2}\right) d y\right) d x$
(6) $\int_{0}^{4}\left(\int_{\sqrt{x}}^{2} \frac{1}{y^{3}+1} d y\right) d x$
(7) $\int_{0}^{2}\left(\int_{x}^{2} x \sqrt{1+y^{3}} d y\right) d x$
(8) $\int_{0}^{2}\left(\int_{\frac{y}{2}}^{1} \exp \left(x^{2}\right) d x\right) d y$
(9) $\int_{0}^{1}\left(\int_{0}^{1} \frac{y}{1+x^{2} y^{2}} d x\right) d y$
(10) $\int_{0}^{\frac{\pi}{2}}\left(\int_{x}^{\frac{\pi}{2}} \frac{\sin y}{y} d y\right) d x$
(11) $\int_{0}^{2}\left(\int_{y^{2}}^{4} \sqrt{x} \sin x d x\right) d y$
(12) $\int_{0}^{2}\left(\int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y\right) d x$
(13) $\int_{0}^{1}\left(\int_{\arcsin y}^{\frac{\pi}{2}} \cos x \sqrt{1+\cos ^{2} x} d x\right) d y$
(14) $\int_{-5}^{5}\left[\int_{0}^{\sqrt{25-x^{2}}}\left(\int_{0}^{\frac{1}{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} d z\right) d y\right] d x$
(15) $\int_{0}^{4}\left[\int_{0}^{1}\left(\int_{2 y}^{y} \frac{2 \cos \left(x^{2}\right)}{\sqrt{z}} d x\right) d y\right] d z$
(16) $\int_{0}^{1}\left[\int_{0}^{1}\left(\int_{x^{2}}^{1} x z \exp \left(z y^{2}\right) d y\right) d x\right] d z$
$\int_{0}^{1}\left[\int_{\sqrt[3]{z}}^{1}\left(\int_{0}^{\ln 3} \frac{\pi e^{2 x} \sin \left(\pi y^{2}\right)}{y^{2}} d x\right) d y\right] d z$
(18) $\int_{0}^{2}\left[\int_{0}^{4-x^{2}}\left(\int_{0}^{x} \frac{\sin (2 z)}{4-z} d y\right) d z\right] d x$

Problem 2. Evaluate the double integral $\iint_{R} f(x, y) d A$ with the following f and R.
(1) $f(x, y)=y^{2} e^{x y}$, and R is the region bounded by $y=x, y=4$ and $x=0$.
(2) $f(x, y)=x y$, and R is the region bounded by the line $y=x-1$ and parabola $y^{2}=2 x+6$.
(3) $f(x, y)=x^{2}+x^{2} y^{3}-y^{2} \sin x$, and $R=\{(x, y)| | x|+|y| \leqslant 1\}$.
(4) $f(x, y)=|x|+|y|$, and $R=\{(x, y)| | x|+|y| \leqslant 1\}$.
(5) $f(x, y)=x y$, and R is the region in the first quadrant bounded by curves $x^{2}+y^{2}=4, x^{2}+y^{2}=9$, $x^{2}-y^{2}=1$ and $x^{2}-y^{2}=4$.
(6) $f(x, y)=x$, and R is the region in the first quadrant bounded by curves $4 x^{2}-y^{2}=4$, $4 x^{2}-y^{2}=16, y=x$ and the x-axis.
(7) $f(x, y)=\exp \left(-x^{2}-4 y^{2}\right)$, and $R=\left\{(x, y) \mid x^{2}+4 y^{2} \leqslant 1\right\}$.
(8) $f(x, y)=\exp \left(\frac{2 y-x}{2 x+y}\right)$, and R is the trapezoid with vertices $(0,2),(1,0),(4,0)$ and $(0,8)$.

Problem 3. Evaluate the integral $\int_{0}^{2}[\arctan (\pi x)-\arctan x] d x$ by converting the integral into a double integral and evaluating the double integral by changing the order of integration.

Problem 4. Evaluate the integral $\int_{0}^{1} \frac{x^{b}-x^{a}}{\ln x} d x$, where $0<a<b$ are constants, by converting the integral into a double integral and evaluating the double integral by changing the order of integration.

Problem 5. Evaluate the integral $\int_{0}^{\infty} \frac{e^{-x}-e^{-3 x}}{x} d x$ by converting the integral into a double integral and evaluating the double integral by changing the order of integration.

Problem 6. Let a, b be positive constants. Evaluate the integral

$$
\int_{0}^{a}\left(\int_{0}^{b} \exp \left(\max \left\{b^{2} x^{2}, a^{2} y^{2}\right\}\right) d y\right) d x .
$$

Problem 7. Show that if $\lambda>\frac{1}{2}$, there does not exist a real-valued continuous function u such that for all x in the closed interval $[0,1]$,

$$
u(x)=1+\lambda \int_{x}^{1} u(y) u(y-x) d y .
$$

Hint: Assume the contrary that there exists such a function u. Integrate the equation above on the interval $[0,1]$.

