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May 10. 2024

Problem 1. Evaluate the following iterated integrals.
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Problem 2. Evaluate the double integral
ĳ

R

f(x, y) dA with the following f and R.

(1) f(x, y) = y2exy, and R is the region bounded by y = x, y = 4 and x = 0.

(2) f(x, y) = xy, and R is the region bounded by the line y = x ´ 1 and parabola y2 = 2x+ 6.

(3) f(x, y) = x2 + x2y3 ´ y2 sinx, and R =
␣
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(4) f(x, y) = |x| + |y|, and R =
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(

.

(5) f(x, y) = xy, and R is the region in the first quadrant bounded by curves x2+y2 = 4, x2+y2 = 9,
x2 ´ y2 = 1 and x2 ´ y2 = 4.

(6) f(x, y) = x, and R is the region in the first quadrant bounded by curves 4x2 ´ y2 = 4,
4x2 ´ y2 = 16, y = x and the x-axis.

(7) f(x, y) = exp(´x2 ´ 4y2), and R =
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(8) f(x, y) = exp
(2y ´ x

2x+ y

)
, and R is the trapezoid with vertices (0, 2), (1, 0), (4, 0) and (0, 8).

Problem 3. Evaluate the integral
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double integral and evaluating the double integral by changing the order of integration.



Problem 4. Evaluate the integral
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integral into a double integral and evaluating the double integral by changing the order of integration.

Problem 5. Evaluate the integral
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Problem 6. Let a, b be positive constants. Evaluate the integral
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Problem 7. Show that if λ ą
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, there does not exist a real-valued continuous function u such that

for all x in the closed interval [0, 1],

u(x) = 1 + λ
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Hint: Assume the contrary that there exists such a function u. Integrate the equation above on the
interval [0, 1].


