Exercise Problem Sets 10

May 02. 2024

Problem 1. Let $m>n$ be natural numbers, and A be an $m \times n$ real matrix, $\boldsymbol{b} \in \mathbb{R}^{m}$ be a vector.
(1) Show that if the minimum of the function $f\left(x_{1}, \cdots, x_{n}\right)=\|A \boldsymbol{x}-\boldsymbol{b}\|$ occurs at the point $\boldsymbol{c}=\left(c_{1}, \cdots, c_{n}\right)$, then \boldsymbol{c} satisfies $A^{\mathrm{T}} A \boldsymbol{c}=A^{\mathrm{T}} \boldsymbol{b}$.
(2) Find the relation between the linear regression and (1).

Problem 2. Let $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)\right\}$ be n points with $x_{i} \neq x_{j}$ if $i \neq j$. Use the Second Partials Test to verify that the formulas for a and b given by

$$
a=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \quad \text { and } \quad b=\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}-a \sum_{i=1}^{n} x_{i}\right)
$$

indeed minimize the function $S(a, b)=\sum_{i=1}^{n}\left(a x_{i}+b-y_{i}\right)^{2}$.
Proof. We compute the Hessian matrix of S and obtain that

$$
\left[\begin{array}{cc}
S_{a a}(a, b) & S_{a b}(a, b) \\
S_{b a}(a, b) & S_{b b}(a, b)
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{n} 2 x_{i}^{2} & \sum_{i=1}^{n} 2 x_{i} \\
\sum_{i=1}^{n} 2 x_{i} & \sum_{i=1}^{n} 2
\end{array}\right]=2\left[\begin{array}{cc}
\sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n} x_{i} & n
\end{array}\right] .
$$

As long as $\left\{\left(x_{i}, y_{i}\right) \mid 1 \leqslant i \leqslant n\right\}$ is not collinear, the Cauchy inequality implies that

$$
\left|\begin{array}{cc}
S_{a a}(a, b) & S_{a b}(a, b) \\
S_{b a}(a, b) & S_{b b}(a, b)
\end{array}\right|=4\left[n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]>0 .
$$

The fact that $S_{a a}(a, b)>0$ shows that S attains a relative minimum at (a, b). Since S is differentiable on \mathbb{R}^{2} and $S \geqslant 0$ and $\lim _{b \rightarrow \infty} S(a, b)=\infty$, if S attains its extrema at some points, the absolute extremum must be an absolute minimum. Since an absolute minimum is also a relative minimum, we conclude that (a, b) given by the formula indeed minimizes S.

Problem 3. The Shannon index (sometimes called the Shannon-Wiener index or Shannon-Weaver index) is a measure of diversity in an ecosystem. For the case of three species, it is defined as

$$
H=-p_{1} \ln p_{1}-p_{2} \ln p_{2}-p_{3} \ln p_{3},
$$

where p_{i} is the proportion of species i in the ecosystem.
(1) Express H as a function of two variables using the fact that $p_{1}+p_{2}+p_{3}=1$.
(2) What is the domain of H ?
(3) Find the maximum value of H. For what values of p_{1}, p_{2}, p_{3} does it occur?

Problem 4. Three alleles (alternative versions of a gene) A, B, and O determine the four blood types $\mathrm{A}(\mathrm{AA}$ or AO$), \mathrm{B}(\mathrm{BB}$ or BO$), \mathrm{O}(\mathrm{OO})$, and AB . The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

$$
P=2 p q+2 p r+2 r q
$$

where p, q, and r are the proportions of A, B, and O in the population. Use the fact that $p+q+r=1$ to show that P is at most $\frac{2}{3}$.

Problem 5. Find an equation of the plane that passes through the point $(1,2,3)$ and cuts off the smallest volume in the first octant.

Problem 6. Use the method of Lagrange multipliers to complete the following.
(1) Maximize $f(x, y)=\sqrt{6-x^{2}-y^{2}}$ subject to the constraint $x+y-2=0$.
(2) Minimize $f(x, y)=3 x^{2}-y^{2}$ subject to the constraint $2 x-2 y+5=0$.
(3) Minimize $f(x, y)=x^{2}+y^{2}$ subject to the constraint $x y^{2}=54$.
(4) Maximize $f(x, y, z)=e^{x y z}$ subject to the constraint $2 x^{2}+y^{2}+z^{2}=24$.
(5) Maximize $f(x, y, z)=\ln \left(x^{2}+1\right)+\ln \left(y^{2}+1\right)+\ln \left(z^{2}+1\right)$ subject to the constraint $x^{2}+y^{2}+z^{2}=12$.
(6) Maximize $f(x, y, z)=x+y+z$ subject to the constraint $x^{2}+y^{2}+z^{2}=1$.
(7) Maximize $f(x, y, z, t)=x+y+z+t$ subject to the constraint $x^{2}+y^{2}+z^{2}+t^{2}=1$.
(8) Minimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraints $x+2 z=6$ and $x+y=12$.
(9) Maximize $f(x, y, z)=z$ subject to the constraints $x^{2}+y^{2}+z^{2}=36$ and $2 x+y-z=2$.
(10) Maximize $f(x, y, z)=y z+x y$ subject to the constraint $x y=1$ and $y^{2}+z^{2}=1$.

Problem 7. Use the method of Lagrange multipliers to find the extreme values of the function $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}$ subject to the constraint $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$.

Proof. Let $g\left(x_{1}, \cdots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}-1$. Suppose that f, under the constraint $g=0$, attains its extrema at $\left(a_{1}, \cdots, a_{n}\right)$. Since $(\nabla g)\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, \cdots, x_{n}\right)$ so that $(\nabla g)\left(x_{1}, \cdots, x_{n}\right) \neq 0$ if $g\left(x_{1}, \cdots, x_{n}\right)=0$, by the Lagrange Multiplier Theorem there exists $\lambda \in \mathbb{R}$ such that

$$
(1, \cdots, 1)=(\nabla f)\left(a_{1}, \cdots, a_{n}\right)=2 \lambda(\nabla g)\left(a_{1}, \cdots, a_{n}\right)=2 \lambda\left(a_{1}, \cdots, a_{n}\right) ;
$$

that is, $2 \lambda a_{j}=1$ for all $1 \leqslant j \leqslant n$. Then $\lambda \neq 0$; thus $a_{j}=\frac{1}{2 \lambda}$ for all $1 \leqslant j \leqslant n$. Since $g\left(a_{1}, \cdots, a_{n}\right)=0$, we find that

$$
\frac{n}{4 \lambda^{2}}=\sum_{i=1}^{n} a_{i}^{2}=1
$$

which shows that $\lambda= \pm \frac{\sqrt{n}}{2}$ so that $a_{j}= \pm \frac{1}{\sqrt{n}}$ for all $1 \leqslant j \leqslant n$. At these two points, $f\left(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right)=$ \sqrt{n} and $f\left(-\frac{1}{\sqrt{n}}, \cdots,-\frac{1}{\sqrt{n}}\right)=-\sqrt{n}$. Since the constraint $g=0$ defines a closed and bounded set, f attains its maximum and minimum of the level set $g=0$. Therefore, f attains its maximum and minimum at $\left(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right)$ and $-\left(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right)$, respectively, and the maximum is \sqrt{n} and the minimum is $-\sqrt{n}$.

Problem 8. Find the extreme value of $f(x, y, z)=z$ subject to the constraints $x^{4}+y^{4}-z^{3}=0$ and $y=z$.

Proof. Let $g(x, y, z)=x^{4}+y^{4}-z^{3}$ and $h(x, y, z)=y-z$. Then

$$
(\nabla g)(x, y, z)=\left(4 x^{3}, 4 y^{3},-3 z^{2}\right) \quad \text { and } \quad(\nabla h)(x, y, z)=(0,1,-1)
$$

which implies that

$$
(\nabla g)(x, y, z) \times(\nabla h)(x, y, z)=\left(3 z^{2}-4 y^{3}, 4 x^{3}, 4 x^{3}\right) .
$$

Suppose the extreme value of f, under the constraints $g=h=0$, occurs at $\left(x_{0}, y_{0}, z_{0}\right)$.

1. If $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right)=0$, then $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,0)$ and $f(0,0,0)=0$.
2. If $(\nabla g)\left(x_{0}, y_{0}, z_{0}\right) \times(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) \neq 0$, then the Lagrange Multiplier Theorem implies that there exist $\lambda, \mu \in \mathbb{R}$ such that

$$
(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)=\lambda(\nabla g)\left(x_{0}, y_{0}, z_{0}\right)+\mu(\nabla h)\left(x_{0}, y_{0}, z_{0}\right) .
$$

Therefore, $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies that

$$
\begin{align*}
4 \lambda x_{0}^{3} & =0, \tag{0.1a}\\
4 \lambda y_{0}^{3}+\mu & =0, \tag{0.1b}\\
-3 \lambda z_{0}^{2}-\mu & =1, \tag{0.1c}\\
x_{0}^{4}+y_{0}^{4}-z_{0}^{3} & =0, \tag{0.1d}\\
y_{0}-z_{0} & =0 . \tag{0.1e}
\end{align*}
$$

Then (0.1a) implies that $\lambda=0$ or $x_{0}=0$.
(a) If $\lambda=0$, then (0.1b) shows $\mu=0$; thus using (0.1c), we obtain a contradiction $0=-1$. Therefore, $\lambda \neq 0$.
(b) If $x_{0}=0$ (and $\lambda \neq 0$), then (0.1 d) implies that $y_{0}^{4}-z_{0}^{3}=0$. Together with (0.1e), we find that $y_{0}=0$ or $y_{0}=1$. However, if $y_{0}=0$, then (0.1 b) shows that $\mu=0$ which again implies a contradiction $0=1$ from (0.1 c). Therefore, $y_{0}=z_{0}=1$ (and there are λ, μ satisfying ($0.1 \mathrm{~b}, \mathrm{c}$) for $y_{0}=z_{0}=1$ but the values of λ and μ are not important).

Therefore, the Lagrange Multiplier Theorem only provides one possible $\left(x_{0}, y_{0}, z_{0}\right)=(0,1,1)$ where f attains its extreme value.

Since the intersection of the level surface $g=0$ and $h=0$ is closed and bounded, f must attains its maximum and minimum subject to the constraints $g=h=0$. Since $(0,0,0)$ and $(0,1,1)$ are the only possible points where f attains its extrema, the maximum and minimum of f, subject to the constraint $g=h=0$, is $f(0,1,1)=1$ and $f(0,0,0)=0$, respectively.

Problem 9. Let A be a full rank $m \times n$ real matrix, where $m<n$. and A have full rank. For a given $b \in \mathbb{R}^{m}$, show that the function f given by

$$
f\left(x_{1}, \cdots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
$$

under the constraint $A x=b$, where $x=\left[x_{1}, \cdots, x_{n}\right]^{\mathrm{T}}$, attains its minimum at the point $A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1} b$. Solution. For $1 \leqslant i \leqslant m$, let a_{i} denote the i-th column of A^{T} and b_{i} denote the i-th component of b. Then $A x=b$ if and only if $a_{i}^{\mathrm{T}} x=b_{i}$ for all $1 \leqslant i \leqslant m$.

Let $g_{i}(x)=a_{i}^{\mathrm{T}} x-b_{i}$. Suppose that the function $f / 2$, under the constraint $g=0$, attains its extrema at $x_{*}=\left[x_{1}^{*}, \cdots, x_{n}^{*}\right]^{\mathrm{T}}$. Then by the fact that A has full rank, $\left\{\nabla g_{i}\left(x_{*}\right)\right\}_{i=1}^{m}=\left\{a_{i}\right\}_{i=1}^{m}$ is a linearly independent set. Therefore, there exist $\lambda_{1}, \cdots, \lambda_{m} \in \mathbb{R}$ such that

$$
x_{*}=\frac{1}{2}(\nabla f)\left(x_{*}\right)=\sum_{i=1}^{m} \lambda_{i} a_{i}=A^{\mathrm{T}} \lambda_{*},
$$

where $\lambda_{*}=\left[\lambda_{1}, \cdots, \lambda_{m}\right]^{\mathrm{T}}$. Since A has full rank, the $m \times m$ matrix $A A^{\mathrm{T}}$ is non-singular; thus

$$
x_{*}=A^{\mathrm{T}} \lambda_{*} \quad \Rightarrow \quad\left(A A^{\mathrm{T}}\right) \lambda_{*}=A x_{*}=b \quad \Rightarrow \quad \lambda_{*}=\left(A A^{\mathrm{T}}\right)^{-1} b .
$$

Therefore, $x_{*}=A^{\mathrm{T}} \lambda_{*}=A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1} b$. Such x_{*} must be the point at which f attains its minimum since the maximum of f, subject to $A x=b$, is ∞ since there are points far far away from the origin but satisfying $A x=b$.

Problem 10. (1) Use the method of Lagrange multipliers to show that the product of three positive numbers x, y, and z, whose sum has the constant value S, is a maximum when the three numbers are equal. Use this result to show that

$$
\frac{x+y+z}{3} \geqslant \sqrt[3]{x y z} \quad \forall x, y, z>0 .
$$

(2) Generalize the result of part (1) to prove that the product $x_{1} x_{2} x_{3} \cdots x_{n}$ is maximized, under the constraint that $\sum_{i=1}^{n} x_{i}=S$ and $x_{i} \geqslant 0$ for all $1 \leqslant i \leqslant n$, when

$$
x_{1}=x_{2}=x_{3}=\cdots=x_{n} .
$$

Then prove that

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leqslant \frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \quad \forall x_{1}, x_{2}, \cdots, x_{n} \geqslant 0 .
$$

Problem 11. (1) Maximize $\sum_{i=1}^{n} x_{i} y_{i}$ subject to the constraints $\sum_{i=1}^{n} x_{i}^{2}=1$ and $\sum_{i=1}^{n} y_{i}^{2}=1$.
(2) Put $x_{i}=\frac{a_{i}}{\sqrt{\sum_{j=1}^{n} a_{j}^{2}}}$ and $y_{i}=\frac{b_{i}}{\sqrt{\sum_{j=1}^{n} b_{j}^{2}}}$ to show that

$$
\sum_{i=1}^{n} a_{i} b_{i} \leqslant \sqrt{\sum_{j=1}^{n} a_{j}^{2}} \sqrt{\sum_{j=1}^{n} b_{j}^{2}}
$$

for any numbers $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n}$. This inequality is known as the Cauchy-Schwarz Inequality.

Problem 12. Find the points on the curve $x^{2}+x y+y^{2}=1$ in the $x y$-plane that are nearest to and farthest from the origin.

Problem 13. If the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is to enclose the circle $x^{2}+y^{2}=2 y$, what values of a and b minimize the area of the ellipse?

Problem 14. (1) Use the method of Lagrange multipliers to prove that the rectangle with maximum area that has a given perimeter p is a square.
(2) Use the method of Lagrange multipliers to prove that the triangle with maximum area that has a given perimeter p is equilateral.

Hint: Use Heron's formula for the area:

$$
A=\sqrt{s(s-x)(s-y)(s-z)},
$$

where $s=\frac{p}{2}$ and x, y, z are the lengths of the sides.
Problem 15. When light waves traveling in a transparent medium strike the surface of a second transparent medium, they tend to "bend" in order to follow the path of minimum time. This tendency is called refraction and is described by Snell' s Law of Refraction,

$$
\frac{\sin \theta_{1}}{\mathrm{v}_{1}}=\frac{\sin \theta_{2}}{\mathrm{v}_{2}}
$$

where θ_{1} and θ_{2} are the magnitudes of the angles shown in the figure, and v_{1} and v_{2} are the velocities of light in the two media. Use the method of Lagrange multipliers to derive this law using $x+y=a$.

Problem 16．A set $C \subseteq \mathbb{R}^{n}$ is said to be convex if

$$
t \boldsymbol{x}+(1-t) \boldsymbol{y} \in C \quad \forall \boldsymbol{x}, \boldsymbol{y} \in C \text { and } t \in[0,1] .
$$

（一個 \mathbb{R}^{n} 中的集合 C 被稱為凸集合如果 C 中任兩點 \boldsymbol{x} 與 \boldsymbol{y} 之連線所形成的線段也在 C 中）。
Suppose that $C \subseteq \mathbb{R}^{n}$ is a convex set，and $f: C \rightarrow \mathbb{R}$ be a differentiable real－valued function． Show that if f on C attains its minimum at a point \boldsymbol{x}^{*} ，then

$$
(\nabla f)\left(\boldsymbol{x}^{*}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right) \geqslant 0 \quad \forall \boldsymbol{x} \in C .
$$

Hint：Recall that $(\nabla f)\left(\boldsymbol{x}^{*}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)$ ，when f is differentiable at x^{*} ，is the directional derivative of f at \boldsymbol{x}^{*} in the＂direction＂$\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)$ ．
Remark：A point \boldsymbol{x}^{*} satisfying（ \star ）is sometimes called a stationary point of f in C ．
Problem 17．Let B be the unit closed ball centered at the origin given by

$$
B=\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \mid\|\boldsymbol{x}\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leqslant 1\right\},
$$

and $f: B \rightarrow \mathbb{R}$ be a differentiable real－valued function．Consider the minimization problem $\min _{\boldsymbol{x} \in B} f(\boldsymbol{x})$ ．
（1）Show that if f attains its minimum at $\boldsymbol{x}^{*} \in B$ ，then there exists $\lambda \leqslant 0$ such that

$$
(\nabla f)\left(\boldsymbol{x}^{*}\right)=\lambda \boldsymbol{x}^{*} .
$$

（2）Find the minimum of the function $f(x, y)=x^{2}+2 y^{2}-x$ on the unit closed disk centered at the origin $\left\{(x, y) \mid x^{2}+y^{2} \leqslant 1\right\}$ using（1）．

Problem 18．Let $\boldsymbol{a} \in \mathbb{R}^{3}$ be a vector，$b \in \mathbb{R}$ ，and C be a half plane given by

$$
C=\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid \boldsymbol{a} \cdot \boldsymbol{x} \leqslant b\right\},
$$

and $f: C \rightarrow \mathbb{R}$ be a differentiable real－valued function．Consider the minimization problem $\min _{\boldsymbol{x} \in C} f(\boldsymbol{x})$ ． Show that if f attains its minimum at $\boldsymbol{x}^{*} \in C$ ，then there exists $\lambda \leqslant 0$ such that

$$
(\nabla f)\left(\boldsymbol{x}^{*}\right)=\lambda \boldsymbol{a}
$$

