
Exercise Problem Sets 7
Apr. 12. 2024

Problem 1. Let f, g : (a, b) Ñ R be real-valued function, h(x, y) = f(x)g(y), and c, d P (a, b). Show
that if f is differentiable at c and g is differentiable at d, then h is differentiable at (c, d).

Problem 2. In the following, show that both fx(0, 0) and fy(0, 0) both exist but that f is not
differentiable at (0, 0).

(1) f(x, y) =

$

&

%

5x2y

x3 + y3
if x3 + y3 ‰ 0 ,

0 if x3 + y3 = 0 .

(2) f(x, y) =

$

&

%

2xy
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

(3) f(x, y) =

$

&

%

3x2y

x4 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

(4) f(x, y) =

$

&

%

sin(x3 + y4)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 3. Show that the function f(x, y) =
a

x2 + y2 sin
a

x2 + y2 is differentiable at (0, 0).

Problem 4. Investigate the differentiability of the following functions at the point (0, 0).

(1) f(x, y) = 3
?
x cos y.

(2) f(x, y) =
a

|xy|.

(3) f(x, y) =

$

&

%

xy
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0)

(4) f(x, y) =

# xy

x+ y2
if x+ y2 ‰ 0 ,

0 if x+ y2 = 0

(5) f(x, y) =

$

&

%

(x2 + y2) sin 1
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 5. Let R Ď R2 be an open region, and f : R Ñ R. Suppose that the partial derivatives
Bf

Bx
and Bf

By
are bounded on R; that is, there exists a real number M ą 0 such that

ˇ

ˇ

ˇ

Bf

Bx
(x, y)

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ

Bf

By
(x, y)

ˇ

ˇ

ˇ
ď M @ (x, y) P R .

Show that f is continuous on U .
Hint: Make use of the mean value theorem.



Proof. Let (a, b) P R be given. Since R is open, there exists δ ą 0 such that the open disk
D((a, b), δ) Ď R.

For (x, y) P D((a, b), δ), we have
ˇ

ˇf(x, y) ´ f(a, b)
ˇ

ˇ =
ˇ

ˇf(x, y) ´ f(a, y) + f(a, y) ´ f(a, b)
ˇ

ˇ ď
ˇ

ˇf(x, y) ´ f(a, y)
ˇ

ˇ +
ˇ

ˇf(a, y) ´ f(a, b)
ˇ

ˇ .

so the mean value theorem shows that

1. there exists ξ between x and a such that
ˇ

ˇf(x, y) ´ f(a, y)
ˇ

ˇ =
ˇ

ˇfx(ξ, y)(x ´ a)
ˇ

ˇ ď M |x ´ a| ;

2. there exists η between y and b such that
ˇ

ˇf(a, y) ´ f(a, b)
ˇ

ˇ =
ˇ

ˇfy(a, η)(y ´ b)
ˇ

ˇ ď M |y ´ b| .

Therefore,
ˇ

ˇf(x, y) ´ f(a, b)
ˇ

ˇ ď M
[
|x ´ a| + |y ´ b|

]
@ (x, y) P D((a, b), δ) .

By the Squeeze Theorem,
lim

(x,y)Ñ(a,b)

ˇ

ˇf(x, y) ´ f(a, b)
ˇ

ˇ = 0 ;

thus lim
(x,y)Ñ(a,b)

f(x, y) = f(a, b) which shows that f is continuous at (a, b). ˝

Problem 6. Let R Ď Rn be an open disk, and f : R Ñ R be a function such that Bf

Bx
(x, y) =

Bf

By
(x, y) = 0 for all (x, y) P R. Show that f is constant in R.

Proof. From Problem 5, we find that
ˇ

ˇf(x, y) ´ f(0, 0)
ˇ

ˇ ď 0
[
|x ´ 0| + |y ´ 0|

]
= 0 @ (x, y) P R ;

thus f(x, y) = f(0, 0) for all (x, y) P R. This shows that f is constant. ˝

Problem 7. Let (a, b) Ď R be an open interval, and for each 1 ď i, j ď n, aij : (a, b) Ñ R be
differentiable functions. Define A = [aij] and J = det(A). Show that

BJ

Bx
= tr

(
Adj(A)BA

Bx

)
,

where for a square matrix M = [mij], tr(M) denotes the trace of M , Adj(M) denotes the adjoint

matrix of M , and BM

Bx
denotes the matrix whose (i, j)-th entry is given by Bmij

Bx
.

Hint: Show that

BJ

Bx
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ba11
Bx

a12 ¨ ¨ ¨ a1n
Ba21
Bx

a22 ¨ ¨ ¨ a2n
... ...

Ban1
Bx

an2 ¨ ¨ ¨ ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11
Ba12
Bx

a13 ¨ ¨ ¨ a1n

a21
Ba22
Bx

a23 ¨ ¨ ¨ a2n
... ...

an1
Ban2
Bx

an3 ¨ ¨ ¨ ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+ ¨ ¨ ¨ +

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 ¨ ¨ ¨ a(n´1)1
Ba1n
Bx

a21 ¨ ¨ ¨ a(n´1)2
Ba2n
Bx... ...

an1 ¨ ¨ ¨ a(n´1)n
Ban1
Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ



and rewrite this identity in the form which is asked to prove. You can also show the differentiation
formula by applying the chain rule to the composite function F ˝ g of maps g : U Ñ Rn2 and
F : Rn2

Ñ R defined by g(x) =
(
a11(x), a12(x), ¨ ¨ ¨ , ann(x)

)
and F (a11, ¨ ¨ ¨ , ann) = det

(
[aij]

)
. Check

first what BF

Baij
is.

Proof. Let A = [aij], and C = [cij] be the cofactor matrix of A; that is,

cij = (´1)i+j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 ¨ ¨ ¨ a1(j´1) a1(j+1) ¨ ¨ ¨ a1n
... ... ¨ ¨ ¨

... ... ¨ ¨ ¨
...

a(i´1)1 a(i´1)2 ¨ ¨ ¨ a(i´1)(j´1) a(i´1)(j+1) ¨ ¨ ¨ a(i´1)n

a(i+1)1 a(i+1)2 ¨ ¨ ¨ a(i+1)(j´1) a(i+1)(j+1) ¨ ¨ ¨ a(i+1)n

... ... ¨ ¨ ¨
... ... ¨ ¨ ¨

...
an1 an2 ¨ ¨ ¨ an(j´1) an(j+1) ¨ ¨ ¨ ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

In other words, the (i, j)-entry of C is (´1)i+j multiplied by the determinant of the (n´ 1)ˆ (n´ 1)

matrix obtained by removing the i-th row and j-th column of A. Then the (i, j)-entry of the adjoint
matrix of A is cji; that is,

Adj(A) = CT .

By the property (cofactor expansion) of the determinant,

det(A) =
n

ÿ

k=1

aikcik for all 1 ď i ď n.

Since the computation of cik does not involve the knowledge of ai1, ai2, ¨ ¨ ¨ , ain, we find that

Bcik
Baij

= 0 for all 1 ď j, k ď n.

Therefore, the product rule implies that

B det(A)
Baij

=
n

ÿ

k=1

[Baik
Baij

cik + aik
Bcik
Baij

]
=

n
ÿ

k=1

δkjcik ,

where δ¨¨ is the Kronecker delta defined by

δij =

"

1 if i = j,
0 if i ‰ j.

Therefore, B det(A)

Baij
= cij.

Now suppose that each aij is a differentiable function defined on (a, b), and

J(x) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11(x) ¨ ¨ ¨ a1n(x)
... . . .

an1(x) ¨ ¨ ¨ ann(x)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ



Then the chain rule shows that

J 1(x) =
n

ÿ

i,j=1

B det(A)
Baij

daij
dx

(x) =
n

ÿ

i,j=1

cij(x)a
1
ij(x) ,

where C(x) = [cij(x)] is the cofactor matrix of A(x) = [aij(x)]. Let D(x) = [dij(x)] be the adjoint
matrix of A(x). Then dij(x) = cji(x). Note that for each 1 ď j, k ď n,

n
ÿ

i=1

cij(x)a
1
ik(x) =

n
ÿ

i=1

dji(x)a
1
ik(x) = the (j, k)-entry of D(x)A 1(x).

Therefore,

J 1(x) =
n

ÿ

i,j=1

cij(x)a
1
ij(x) =

n
ÿ

j=1

the (j, j)-entry of D(x)A 1(x)

which shows that J 1(x) = tr(D(x)A(x)), as desired. ˝


