Exercise Problem Sets 7

Apr. 12. 2024

Problem 1. Let $f, g:(a, b) \rightarrow \mathbb{R}$ be real-valued function, $h(x, y)=f(x) g(y)$, and $c, d \in(a, b)$. Show that if f is differentiable at c and g is differentiable at d, then h is differentiable at (c, d).

Problem 2. In the following, show that both $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist but that f is not differentiable at $(0,0)$.
(1) $f(x, y)=\left\{\begin{array}{cl}\frac{5 x^{2} y}{x^{3}+y^{3}} & \text { if } x^{3}+y^{3} \neq 0, \\ 0 & \text { if } x^{3}+y^{3}=0 .\end{array}\right.$
(2) $f(x, y)=\left\{\begin{array}{cl}\frac{2 x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
(3) $f(x, y)=\left\{\begin{array}{cl}\frac{3 x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) \text {. }\end{array}\right.$
(4) $f(x, y)=\left\{\begin{array}{cl}\frac{\sin \left(x^{3}+y^{4}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$

Problem 3. Show that the function $f(x, y)=\sqrt{x^{2}+y^{2}} \sin \sqrt{x^{2}+y^{2}}$ is differentiable at $(0,0)$.
Problem 4. Investigate the differentiability of the following functions at the point $(0,0)$.
(1) $f(x, y)=\sqrt[3]{x} \cos y$.
(2) $f(x, y)=\sqrt{|x y|}$.
(3) $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right.$
(4) $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x+y^{2}} & \text { if } x+y^{2} \neq 0, \\ 0 & \text { if } x+y^{2}=0\end{array}\right.$
(5) $f(x, y)=\left\{\begin{array}{cl}\left(x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$

Problem 5. Let $R \subseteq \mathbb{R}^{2}$ be an open region, and $f: R \rightarrow \mathbb{R}$. Suppose that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are bounded on R; that is, there exists a real number $M>0$ such that

$$
\left|\frac{\partial f}{\partial x}(x, y)\right|,\left|\frac{\partial f}{\partial y}(x, y)\right| \leqslant M \quad \forall(x, y) \in R .
$$

Show that f is continuous on U.
Hint: Make use of the mean value theorem.

Proof. Let $(a, b) \in R$ be given. Since R is open, there exists $\delta>0$ such that the open disk $D((a, b), \delta) \subseteq R$.

For $(x, y) \in D((a, b), \delta)$, we have

$$
|f(x, y)-f(a, b)|=|f(x, y)-f(a, y)+f(a, y)-f(a, b)| \leqslant|f(x, y)-f(a, y)|+|f(a, y)-f(a, b)| .
$$

so the mean value theorem shows that

1. there exists ξ between x and a such that

$$
|f(x, y)-f(a, y)|=\left|f_{x}(\xi, y)(x-a)\right| \leqslant M|x-a| ;
$$

2. there exists η between y and b such that

$$
|f(a, y)-f(a, b)|=\left|f_{y}(a, \eta)(y-b)\right| \leqslant M|y-b| .
$$

Therefore,

$$
|f(x, y)-f(a, b)| \leqslant M[|x-a|+|y-b|] \quad \forall(x, y) \in D((a, b), \delta) .
$$

By the Squeeze Theorem,

$$
\lim _{(x, y) \rightarrow(a, b)}|f(x, y)-f(a, b)|=0
$$

thus $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$ which shows that f is continuous at (a, b).
Problem 6. Let $R \subseteq \mathbb{R}^{n}$ be an open disk, and $f: R \rightarrow \mathbb{R}$ be a function such that $\frac{\partial f}{\partial x}(x, y)=$ $\frac{\partial f}{\partial y}(x, y)=0$ for all $(x, y) \in R$. Show that f is constant in R.
Proof. From Problem 5, we find that

$$
|f(x, y)-f(0,0)| \leqslant 0[|x-0|+|y-0|]=0 \quad \forall(x, y) \in R ;
$$

thus $f(x, y)=f(0,0)$ for all $(x, y) \in R$. This shows that f is constant.
Problem 7. Let $(a, b) \subseteq \mathbb{R}$ be an open interval, and for each $1 \leqslant i, j \leqslant n, a_{i j}:(a, b) \rightarrow \mathbb{R}$ be differentiable functions. Define $A=\left[a_{i j}\right]$ and $J=\operatorname{det}(A)$. Show that

$$
\frac{\partial J}{\partial x}=\operatorname{tr}\left(\operatorname{Adj}(A) \frac{\partial A}{\partial x}\right)
$$

where for a square matrix $M=\left[m_{i j}\right], \operatorname{tr}(M)$ denotes the trace of $M, \operatorname{Adj}(M)$ denotes the adjoint matrix of M, and $\frac{\partial M}{\partial x}$ denotes the matrix whose (i, j)-th entry is given by $\frac{\partial m_{i j}}{\partial x}$.
Hint: Show that

$$
\frac{\partial J}{\partial x}=\left|\begin{array}{cccc}
\frac{\partial a_{11}}{\partial x} & a_{12} & \cdots & a_{1 n} \\
\frac{\partial a_{21}}{\partial x} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
\frac{\partial a_{n 1}}{\partial x} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|+\left|\begin{array}{ccccc}
a_{11} & \frac{\partial a_{12}}{\partial x} & a_{13} & \cdots & a_{1 n} \\
a_{21} & \frac{\partial a_{22}}{\partial x} & a_{23} & \cdots & a_{2 n} \\
\vdots & & & \vdots & \\
a_{n 1} & \frac{\partial a_{n 2}}{\partial x} & a_{n 3} & \cdots & a_{n n}
\end{array}\right|+\cdots+\left|\begin{array}{cccc}
a_{11} & \cdots & a_{(n-1) 1} & \frac{\partial a_{1 n}}{\partial x} \\
a_{21} & \cdots & a_{(n-1) 2} & \frac{\partial a_{2 n}}{\partial x} \\
\vdots & & & \vdots \\
a_{n 1} & \cdots & a_{(n-1) n} & \frac{\partial a_{n 1}}{\partial x}
\end{array}\right|
$$

and rewrite this identity in the form which is asked to prove. You can also show the differentiation formula by applying the chain rule to the composite function $F \circ g$ of maps $g: U \rightarrow \mathbb{R}^{n^{2}}$ and $F: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$ defined by $g(x)=\left(a_{11}(x), a_{12}(x), \cdots, a_{n n}(x)\right)$ and $F\left(a_{11}, \cdots, a_{n n}\right)=\operatorname{det}\left(\left[a_{i j}\right]\right)$. Check first what $\frac{\partial F}{\partial a_{i j}}$ is.

Proof. Let $A=\left[a_{i j}\right]$, and $C=\left[c_{i j}\right]$ be the cofactor matrix of A; that is,

$$
c_{i j}=(-1)^{i+j}\left|\begin{array}{ccccccc}
a_{11} & a_{12} & \cdots & a_{1(j-1)} & a_{1(j+1)} & \cdots & a_{1 n} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
a_{(i-1) 1} & a_{(i-1) 2} & \cdots & a_{(i-1)(j-1)} & a_{(i-1)(j+1)} & \cdots & a_{(i-1) n} \\
a_{(i+1) 1} & a_{(i+1) 2} & \cdots & a_{(i+1)(j-1)} & a_{(i+1)(j+1)} & \cdots & a_{(i+1) n} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n(j-1)} & a_{n(j+1)} & \cdots & a_{n n}
\end{array}\right| .
$$

In other words, the (i, j)-entry of C is $(-1)^{i+j}$ multiplied by the determinant of the $(n-1) \times(n-1)$ matrix obtained by removing the i-th row and j-th column of A. Then the (i, j)-entry of the adjoint matrix of A is $c_{j i}$; that is,

$$
\operatorname{Adj}(A)=C^{\mathrm{T}} .
$$

By the property (cofactor expansion) of the determinant,

$$
\operatorname{det}(A)=\sum_{k=1}^{n} a_{i k} c_{i k} \quad \text { for all } 1 \leqslant i \leqslant n
$$

Since the computation of $c_{i k}$ does not involve the knowledge of $a_{i 1}, a_{i 2}, \cdots, a_{i n}$, we find that

$$
\frac{\partial c_{i k}}{\partial a_{i j}}=0 \quad \text { for all } 1 \leqslant j, k \leqslant n
$$

Therefore, the product rule implies that

$$
\frac{\partial \operatorname{det}(A)}{\partial a_{i j}}=\sum_{k=1}^{n}\left[\frac{\partial a_{i k}}{\partial a_{i j}} c_{i k}+a_{i k} \frac{\partial c_{i k}}{\partial a_{i j}}\right]=\sum_{k=1}^{n} \delta_{k j} c_{i k},
$$

where $\delta_{\text {.. }}$ is the Kronecker delta defined by

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}
$$

Therefore, $\frac{\partial \operatorname{det}(A)}{\partial a_{i j}}=c_{i j}$.
Now suppose that each $a_{i j}$ is a differentiable function defined on (a, b), and

$$
J(x)=\left|\begin{array}{ccc}
a_{11}(x) & \cdots & a_{1 n}(x) \\
\vdots & \ddots & \\
a_{n 1}(x) & \cdots & a_{n n}(x)
\end{array}\right|
$$

Then the chain rule shows that

$$
J^{\prime}(x)=\sum_{i, j=1}^{n} \frac{\partial \operatorname{det}(A)}{\partial a_{i j}} \frac{d a_{i j}}{d x}(x)=\sum_{i, j=1}^{n} c_{i j}(x) a_{i j}^{\prime}(x),
$$

where $C(x)=\left[c_{i j}(x)\right]$ is the cofactor matrix of $A(x)=\left[a_{i j}(x)\right]$. Let $D(x)=\left[d_{i j}(x)\right]$ be the adjoint matrix of $A(x)$. Then $d_{i j}(x)=c_{j i}(x)$. Note that for each $1 \leqslant j, k \leqslant n$,

$$
\sum_{i=1}^{n} c_{i j}(x) a_{i k}^{\prime}(x)=\sum_{i=1}^{n} d_{j i}(x) a_{i k}^{\prime}(x)=\text { the }(j, k) \text {-entry of } D(x) A^{\prime}(x) .
$$

Therefore,

$$
J^{\prime}(x)=\sum_{i, j=1}^{n} c_{i j}(x) a_{i j}^{\prime}(x)=\sum_{j=1}^{n} \text { the }(j, j) \text {-entry of } D(x) A^{\prime}(x)
$$

which shows that $J^{\prime}(x)=\operatorname{tr}(D(x) A(x))$, as desired.

