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Mar. 15. 2024

Problem 1. Find the interval of convergence of the following power series.
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Problem 2. The function J0 defined by

J0(x) =
8
ÿ

n=0

(´1)nx2n

22n(n!)2

is called the Bessel function of the first kind of order 0. Find its domain (that is, the interval of
convergence).

Problem 3. The function J1 defined by

J1(x) =
8
ÿ

n=0
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is called the Bessel function of the first kind of order 1. Find its domain (that is, the interval of
convergence).

Problem 4. The function A defined by

A(x) = 1 +
x3
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is called an Airy function after the English mathematician and astronomer Sir George Airy (1801–
1892). Find the domain of the Airy function.

Solution. Write
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Then ak satisfies

a3k+3 = a3k
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@ k P N Y t0u and a0 = 1 .

Therefore, for all x P R,
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thus the radius of convergence of the Airy function is 8. ˝

Problem 5. A function f is defined by

f(x) = 1 + 2x+ x2 + 2x3 + x4 + ¨ ¨ ¨ ;

that is, its coefficients are c2n = 1 and c2n+1 = 2 for all n ě 0. Find the interval of convergence of
the series and find an explicit formula for f(x).

Proof. Write f(x) =
8
ř
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cnx
n, where c2n = 1 and c2n+1 = 2 for all n ě 0. Then the fact that
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a
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thus we conclude that the series converges for |x| ă 1 and diverges if |x| ą 1. Therefore, the radius
of convergence is 1.

Clearly the power series does not converges at x = ˘1 by the n-th term’s test, so the interval of
convergence of the power series is (´1, 1). ˝

Problem 6. To find the sum of the series
8
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, express 1

1 ´ x
as a geometric series, differenti-

ate both sides of the resulting equation with respect to x, multiply both sides of the result by x,
differentiate again, multiply by x again, and set x equal to 1

2
. What do you get?

Problem 7. Complete the following.

(1) Use the power series of y = arctanx to show that
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Problem 8. Show that the Bessel function of the first kind of order 0, denoted by J0 and defined
by

J0(x) =
8
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,

satisfies the differential equation

x2y 11(x) + xy 1(x) + x2y(x) = 0 , y(0) = 1, y 1(0) = 0 .

Problem 9. Show that the Bessel function of the first kind of order 1, denoted by J1 and defined
by

J1(x) =
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satisfies the differential equation

x2y 11(x) + xy 1(x) + (x2 ´ 1)y(x) = 0 , y(0) = 0, y 1(0) =
1

2
.

Problem 10. Suppose that x1(t) and x2(t) are functions of t satisfying the following equations

x 11
1 (t) ´ x1(t) = 0 , x1(0) = 1 , x 1

1(0) = 0 ,

x 11
2 (t) ´ x2(t) = 0 , x2(0) = 0 , x 1

2(0) = 1 ,

where 1 denotes the derivatives with respect to t.

1. Assume that the function x1(t) and x2(t) can be written as a power series (on a certain interval),

that is, x1(t) =
8
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k and x2(t) =

8
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bkt
k. Show that

(k + 2)(k + 1)ak+2 = ak and (k + 2)(k + 1)bk+2 = bk @ k ě 0 .

2. Find ak and bk, and conclude that x1 and x2 are some functions that we have seen before.

3. Find a function x(t) satisfying

x 11(t) ´ x(t) = 0 , x(0) = a , x 1(0) = b .

Note that x can be written as the linear combination of x1 and x2.

Problem 11. Suppose that x(t) is a function of t satisfying the following equations

x 11(t)−2x 1(t) + 2x(t) = 0 , x(0) = 0 , x 1(0) = 1 ,

where 1 denotes the derivatives with respect to t.

1. Assume that the function x(t) can be written as a power series (on a certain interval), that is,
x(t) =

8
ř

k=0

akt
k. Find a0, a1, ¨ ¨ ¨ , a5.



2. Show that the 5-th Maclaurin polynomial of et sin t agrees with the 5-th Maclaurin polynomial
of x(t).

Problem 12. Find the power series solution to the differential equation

y 11(x) + x2y(x) = 0 , y(0) = 1 , y 1(0) = 0 .

What is the radius of convergence of this series solution?

Problem 13. In this problem we try to establish the following theorem

Let the radius of convergence of the power series f(x) =
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Prove case 1 of the theorem above through the following steps.
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3. Use (0.1) to show that g is continuous at 1. Note that you might need to use ε-δ argument.
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By the fact that lim
nÑ8
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3. Let ε ą 0 be given. Since lim
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Choose 0 ă δ ă 1 such that δ
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Therefore, lim
xÑ1´

g(x) = 0 = g(1) which shows that g is continuous at 1. ˝

Problem 14. Let tanu8
n=0 and tbnu8

n=0 be sequence of real numbers such that the series
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by completing the following.

(a) Show that Cn =
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Proof. 1(a). By the definition of Cn,
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1(b). Let ε ą 0 be given. Since lim
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Therefore, lim
nÑ8

Cn = AB. ˝


