Exercise Problem Sets 2

Mar. 02. 2024

Problem 1. Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ is convergent or divergent. If it is convergent, find its sum.
(1) $a_{n}=\frac{1}{1+\left(\frac{2}{3}\right)^{n}}$
(2) $a_{n}=\ln \left(\frac{n^{2}+1}{2 n^{2}+1}\right)$
(3) $a_{n}=e^{-n}+\frac{1}{n(n+1)}$
(4) $a_{n}=\frac{1}{n^{3}-n}$
(5) $a_{n}=\frac{40 n}{(2 n-1)^{2}(2 n+1)^{2}}$

Problem 2. Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ is convergent or divergent.
(1) $a_{n}=\frac{1}{n^{1+\frac{1}{n}}}$
(2) $a_{n}=\ln \left(1+\frac{1}{n^{2}}\right)$
(3) $a_{n}=\frac{2^{n}+3^{n}}{3^{n}+4^{n}}$
(4) $a_{n}=\tan \frac{1}{n}$
(5) $a_{n}=\sin ^{n} \frac{1}{\sqrt{n}}$
(6) $a_{n}=\frac{\arctan n}{n^{1.1}}$
(7) $a_{n}=\left[-\ln \left(e^{2}+\frac{1}{n^{2}}\right)\right]^{n}$
(8) $a_{n}=\left(1-\frac{1}{n}\right)^{n^{2}}$
(9) $a_{n}=\left(1+\frac{1}{n}\right)^{-n^{2}}$
(10) $a_{n}=\frac{(n!)^{2}}{(2 n)!}$
(11) $a_{n}=\frac{n!\ln n}{n(n+2)!}$
(12) $a_{n}=\frac{n!}{n^{n}}$
(13) $a_{n}=\frac{(-1)^{n}(3 n)!}{n!(n+1)!(n+2)!}$
(14) $a_{n}=\frac{(-1)^{n}(n!)^{n}}{n^{n^{2}}}$
(15) $a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{2^{n} n!}$
(16) $a_{n}=(-1)^{n}(\sqrt{n+\sqrt{n}}-\sqrt{n})$
(17) $a_{n}=(-1)^{n} \frac{(n!)^{2} 3^{n}}{(2 n+1)!}$

Problem 3. Find values of x for which the following series converges.
(1) $\sum_{n=1}^{\infty}(-4)^{n}(x-5)^{n}$
(2) $\sum_{n=1}^{\infty} \frac{2^{n}}{x^{n}}$
(3) $\sum_{n=1}^{\infty} \frac{\sin ^{n} x}{3^{n}}$
(4) $\sum_{n=1}^{\infty} e^{n x}$.

Problem 4. The Fibonacci sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence defined recursively by

$$
f_{1}=1, \quad f_{2}=1 \quad \text { and } \quad f_{n+2}=f_{n+1}+f_{n} \quad \forall n \in \mathbb{N} .
$$

Show the following.
(1) $\frac{1}{f_{n-1} f_{n+1}}=\frac{1}{f_{n-1} f_{n}}-\frac{1}{f_{n} f_{n+1}}$ for all $n \geqslant 2$.
(2) $\sum_{n=2}^{\infty} \frac{1}{f_{n-1} f_{n+1}}=1$.
(3) $\sum_{n=2}^{\infty} \frac{f_{n}}{f_{n-1} f_{n+1}}=2$.

Problem 5. Consider the series $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$.
(1) Find the partial sum S_{1}, S_{2}, S_{3} and S_{4}. Do you recognize the denominators? Use the pattern to guess a formula for S_{n}.
(2) Prove your guess by induction.
(3) Show that the given series is convergent, and find the sum.

Problem 6. Find all p and q such that $\sum_{k=2}^{\infty} \frac{(\ln k)^{q}}{k^{p}}$ converges.
Problem 7. Show that if $\sum_{k=1}^{\infty} a_{k}$ is a convergent series of positive terms, then $\sum_{k=1}^{\infty} \sin a_{k}$ converges.
Problem 8. Let $S=\sum_{k=1}^{\infty} \frac{1}{k^{2}}$. Euler found that $S=\frac{\pi^{2}}{6}$ in 1735 AD .
(1) Show that $S=1+\sum_{k=1}^{\infty} \frac{1}{n^{2}(n+1)}$.
(2) Which of the sums $\sum_{k=1}^{1000000} \frac{1}{k^{2}}$ or $1+\sum_{k=1}^{1000} \frac{1}{k^{2}(k+1)}$ should give a better approximation of S ? Explain your answer.

Hint: (1) $\frac{1}{n^{2}(n+1)}=\frac{1}{n^{2}}-\frac{1}{n(n+1)}$.
Problem 9. Find all real numbers x such that $\sum_{k=1}^{\infty} \frac{\cos (k x)}{\ln k}$ converges.
Problem 10. Show by example that $\sum_{k=1}^{\infty} a_{k} b_{k}$ may diverge even if $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ both converge.
Problem 11. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers such that $a_{n}, b_{n}>0$ for all $n \geqslant N$. Define

$$
c_{n}=b_{n}-b_{n+1} \frac{a_{n+1}}{a_{n}} \quad \forall n \in \mathbb{N} .
$$

1. Show that if there exists a constant $r>0$ such that $r<c_{n}$ for all $n \geqslant N$, then $\sum_{k=1}^{\infty} a_{k}$ converges. Hint: Rewrite (\star) as $b_{n}=c_{n}+\frac{a_{n+1}}{a_{n}} b_{n+1}$ and then obtain

$$
\begin{aligned}
b_{N} & =c_{N}+\frac{a_{N+1}}{a_{N}} b_{N+1}=c_{N}+\frac{a_{N+1}}{a_{N}}\left(c_{N+1}+\frac{a_{N+2}}{a_{N+1}} b_{N+2}\right)=c_{N}+\frac{a_{N+1}}{a_{N}} c_{N+1}+\frac{a_{N+2}}{a_{N}} b_{N+2} \\
& =c_{N}+\frac{a_{N+1}}{a_{N}} c_{N+1}+\frac{a_{N+2}}{a_{N}}\left(c_{N+2}+\frac{a_{N+3}}{a_{N+2}} b_{N+3}\right)=\cdots \\
& =c_{N}+\frac{a_{N+1}}{a_{N}} c_{N+1}+\frac{a_{N+2}}{a_{N}} c_{N+2}+\cdots+\frac{a_{N+n}}{a_{N}} c_{N+n}+\frac{a_{N+n+1}}{a_{N}} b_{N+n+1} .
\end{aligned}
$$

Use the fact that $0<r<c_{n}$ for all $n \geqslant N$ to conclude that

$$
\sum_{k=N}^{N+n} a_{k} \leqslant \frac{a_{N} b_{N}}{r} \quad \forall n \in \mathbb{N}
$$

Note that then the sequence of partial sum of $\sum_{k=1}^{\infty} a_{k}$ then is bounded from above (by $\sum_{k=1}^{N-1} a_{k}+$ $\left.\frac{a_{N} b_{N}}{r}\right)$.

2．Show that if $\sum_{k=1}^{\infty} \frac{1}{b_{k}}$ diverges and $c_{n} \leqslant 0$ for all $n \geqslant N$ ，then $\sum_{k=1}^{\infty} a_{k}$ diverges．
Hint：The fact that $c_{n} \leqslant 0$ for all $n \geqslant N$ implies that $b_{n} a_{n} \leqslant b_{n+1} a_{n+1}$ for all $n \geqslant N$ ．Use this fact to conclude that

$$
\frac{a_{N} b_{N}}{b_{n}} \leqslant a_{n} \quad \forall n \geqslant N
$$

and then apply the direct comparison test to conclude that $\sum_{k=1}^{\infty} a_{k}$ diverges．
Problem 12．Let $\sum_{k=1}^{\infty} a_{k}$ be a series with positive terms，and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$ ．We know from class that the ratio test fails when this happens，but there are some refined results concerning this particular case．

1．（Raabe＇s test）：
（a）If there exists a constant $\mu>1$ such that $\frac{a_{n+1}}{a_{n}}<1-\frac{\mu}{n}$ for all $n \geqslant N$ ，then $\sum_{k=1}^{\infty} a_{k}$ converges．
（b）If there exists a constant $0<\mu<1$ such that $\frac{a_{n+1}}{a_{n}}>1-\frac{\mu}{n}$ for all $n \geqslant N$ ，then $\sum_{k=1}^{\infty} a_{k}$ diverges．
Hint：Consider the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ defined by $b_{n}=(n-1) a_{n}-n a_{n+1}$ ．Then $\sum_{k=1}^{\infty} b_{k}$ is a telescoping series．For case（a），show that $\left\{n a_{n+1}\right\}_{n=N}^{\infty}$ is a positive decreasing sequence and then conclude that $\sum_{k=1}^{\infty} b_{k}$ converges．Note that $b_{n} \geqslant(\mu-1) a_{n}$ for all $n \geqslant N$ ．For case（b）， show that $\left\{n a_{n+1}\right\}_{n=N}^{\infty}$ is a positive increasing sequence；thus $a_{n} \geqslant \frac{N a_{N+1}}{n-1}$ for all $n \geqslant N+1$ which implies that $\sum_{k=1}^{\infty} a_{k}$ diverges．
Remark：注意到（a）說的是如果 $\left\{a_{n}\right\}_{n=1}^{\infty}$ 在某項之後「遞減得夠快」，那麼 $\sum_{k=1}^{\infty} a_{k}$ 收敛。反之，如果 $\left\{a_{n}\right\}_{n=1}^{\infty}$ 「並非遞減得那麼快」，那麼 $\sum_{k=1}^{\infty} a_{k}$ 發散。

2．（Gauss＇s test）：Suppose that there exist a positive constant $\epsilon>0$ ，a constant μ ，and a bounded sequence $\left\{R_{n}\right\}_{n=1}^{\infty}$ such that

$$
\frac{a_{n+1}}{a_{n}}=1-\frac{\mu}{n}+\frac{R_{n}}{n^{1+\epsilon}} \quad \text { for all } n \geqslant N
$$

（a）If $\mu>1$ ，then $\sum_{k=1}^{\infty} a_{k}$ converges．（b）If $\mu \leqslant 1$ ，then $\sum_{k=1}^{\infty} a_{k}$ diverges．
Hint：Show that if $\mu>1$ or $\mu<1$ ，one can apply Raabe＇s test to conclude Gauss＇s test．For the case $\mu=1$ ，let $b_{n}=(n-1) \ln (n-1)$ for $n \geqslant 2$ ．Using the second result of Problem 11 to show the divergence of $\sum_{k=1}^{\infty} a_{k}$（by showing that c_{n} defined by (\star) is non－positive for all large enough n ）．

Problem 13．Complete the following．

1. Show that $\sum_{k=1}^{\infty}\left(1-\frac{1}{\sqrt{k}}\right)^{k}$ converges.
2. Show that $\sum_{k=2}^{\infty} \frac{\log (k+1)-\log k}{(\log k)^{2}}$ converges.
3. Use Gauss's test to show that both the general harmonic series $\sum_{k=1}^{\infty} \frac{1}{a k+b}$, where $a \neq 0$, and the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverge.
4. Show that $\sum_{k=1}^{\infty} \frac{k!}{(\alpha+1)(\alpha+2) \cdots(\alpha+k)}$ converges if $\alpha>1$ and diverges if $\alpha \leqslant 1$.
5. Test the following "hypergeometric" series for convergence or divergence:
(a) $\sum_{k=1}^{\infty} \frac{\alpha(\alpha+1)(\alpha+2) \cdots(\alpha+k-1)}{\beta(\beta+1)(\beta+2) \cdots(\beta+k-1)}=\frac{\alpha}{\beta}+\frac{\alpha(\alpha+1)}{\beta(\beta+1)}+\frac{\alpha(\alpha+1)(\alpha+2)}{\beta(\beta+1)(\beta+2)}+\cdots$.
(b) $1+\frac{\alpha \cdot \beta}{1 \cdot \gamma}+\frac{\alpha(\alpha+1) \cdot \beta(\beta+1)}{1 \cdot 2 \gamma \cdot(\gamma+1)}+\frac{\alpha(\alpha+1)(\alpha+2) \cdot \beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma+1)(\gamma+2)}+\cdots$.

Problem 14. Let $\sum_{k=1}^{\infty} a_{k}$ be a conditionally convergent series. Show that $\sum_{k=1}^{\infty}\left[1+\operatorname{sgn}\left(a_{k}\right)\right] a_{k}$ and $\sum_{k=1}^{\infty}\left[1-\operatorname{sgn}\left(a_{k}\right)\right] a_{k}$ both diverge. Here the sign function sgn is defined by

$$
\operatorname{sgn}(a)=\left\{\begin{array}{cl}
1 & \text { if } a>0 \\
0 & \text { if } a=0 \\
-1 & \text { if } a<0
\end{array}\right.
$$

Problem 15. A permutation of a non-empty set A is a one-to-one function from A onto A. Let $\pi: \mathbb{N} \rightarrow \mathbb{N}$ be a permutation of \mathbb{N}.

1. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence of real numbers. Show that $\left\{a_{\pi(n)}\right\}_{n=1}^{\infty}$ is also convergent; that is, show that if $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a sequence defined by $b_{n}=a_{\pi(n)}$, then $\left\{b_{n}\right\}_{n=1}^{\infty}$ also converges.
2. Suppose that $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent. Show that $\sum_{k=1}^{\infty} a_{\pi(k)}$ is also absolutely convergent, and

$$
\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} a_{\pi(k)}
$$

3. Suppose that $\sum_{k=1}^{\infty} a_{k}$ is conditionally convergent. Show that for each $r \in \mathbb{R}$, there exists a permutation $\pi: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\sum_{k=1}^{\infty} a_{\pi(k)}=r
$$

