Exercise Problem Sets 9

Nov. 17. 2023

Problem 1. Find the following definite integrals (without using any further techniques of integrations).

1.
$$\int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx$$
.
2. $\int_{0}^{\frac{\pi}{3}} (\cos x + \sec x)^2 \, dx$.
3. $\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos^2 x} \, dx$.
4. $\int_{0}^{\frac{\pi}{6}} (\sec x + \tan x)^2 \, dx$.
5. $\int_{0}^{\pi} (\cos x + |\cos x|) \, dx$.
6. $\int_{0}^{\frac{3\pi}{2}} |\sin x| \, dx$.
7. $\int_{0}^{4} |x^2 - 4x + 3| \, dx$.

Problem 2. Find $\lim_{x\to\infty} \frac{1}{\sqrt{x}} \int_1^x \frac{dt}{\sqrt{t}}$.

Problem 3. Find the following derivatives.

$$1. \ \frac{d}{dx} \int_{0}^{\sqrt{x}} \cos t \, dt. \qquad 2. \ \frac{d}{dx} \int_{1}^{\sin x} 3t^2 \, dt. \qquad 3. \ \frac{d}{dx} \int_{0}^{\tan x} \sec^2 t \, dt.$$

$$4. \ \frac{d}{dx} \int_{0}^{\sqrt{x}} \left(t^4 + \frac{3}{\sqrt{1 - t^2}}\right) dt. \qquad 5. \ \frac{d}{dx} \int_{2}^{x^2} \sin(t^3) \, dt. \qquad 6. \ \frac{d}{dx} \int_{0}^{\sin x} \frac{1}{\sqrt{1 - t^2}} \, dt, \ |x| < \frac{\pi}{2}.$$

$$7. \ \frac{d}{dx} \int_{0}^{\tan x} \frac{1}{1 + t^2} \, dt.$$

Problem 4. Verify by differentiation that the formula is correct.

1.
$$\int \frac{1}{x^2 \sqrt{1+x^2}} dx = -\frac{\sqrt{1+x^2}}{x} + C.$$

2.
$$\int \tan^2 x \, dx = \tan x - x + C.$$

3.
$$\int x \sqrt{a+bx} \, dx = \frac{2}{15b^2} (3bx - 2a)(a+bx)^{\frac{3}{2}} + C.$$

Problem 5. Find an anti-derivative of the function f(x) = |x|.

Problem 6. Let
$$G(x) = \int_0^x \left[s \int_0^s f(t) dt \right] ds$$
, where $f : \mathbb{R} \to \mathbb{R}$ is continuous. Find
1. $G(0)$. 2. $G'(0)$. 3. $G''(0)$. 4. $G''(x)$.

Problem 7. Suppose that f has a positive derivative for all values of x (that is, f'(x) > 0 for all $x \in \mathbb{R}$) and that f(1) = 0. Which of the following statements must be true of the function

$$g(x) = \int_0^x f(t) \, dt?$$

Give reasons for your answers.

- a. g is a differentiable function of x.
- b. g is a continuous function of x.
- c. The graph of g has a horizontal tangent at x = 1.
- d. g has a local maximum at x = 1.
- e. g has a local minimum at x = 1.
- f. The graph of g has an inflection point at x = 1.
- g. The graph of $\frac{dg}{dx}$ crosses the x-axis at x = 1.

Problem 8. For each continuous function $f : [0, 1] \to \mathbb{R}$, let

$$I(f) = \int_0^1 x^2 f(x) \, dx$$
 and $J(f) = \int_0^1 x f(x)^2 \, dx$.

Find the maximum value of I(f) - J(f) over all such functions f.