Exercise Problem Sets 12

Dec. 08. 2023

Problem 1. Evaluate the following limits. Use L'Hôpital's Rule where appropriate. If L'Hôpital's Rule does not apply, explain why.

1. $\lim_{x \to 0^{+}} \frac{\arctan(2x)}{\ln x}$ 2. $\lim_{x \to 0^{+}} \frac{x^{x} - 1}{\ln x + x - 1}$ 3. $\lim_{x \to 0} \frac{\ln(1 + x)}{\cos x + e^{x} - 1}$ 4. $\lim_{x \to 0} \frac{x^{a} - 1}{x^{b} - 1}$, where $b \neq 0$.
5. $\lim_{x \to 0} \frac{e^{x} - e^{-x} - 2x}{x - \sin x}$ 6. $\lim_{x \to a^{+}} \frac{\cos x \cdot \ln(x - a)}{\ln(e^{x} - e^{a})}$ 7. $\lim_{x \to 0^{+}} \left(\frac{1}{x} - \frac{1}{\arctan x}\right)$ 8. $\lim_{x \to \infty} (x - \ln x)$ 9. $\lim_{x \to 1^{+}} \ln(x^{7} - 1) - \ln(x^{5} - 1)$

10.
$$\lim_{x \to \infty} x^{\frac{1}{1+\ln x}}$$
. 11. $\lim_{x \to \infty} x^{e^{-1}}$. 12. $\lim_{x \to 1} (2-x)^{\tan(\pi x/2)}$. 13. $\lim_{x \to 0^+} (\sin x)(\ln x)$.

Problem 2. Evaluate the following limits:

1.
$$\lim_{x \to \infty} x \left[\left(1 + \frac{1}{x} \right)^x - e \right].$$
2.
$$\lim_{x \to \infty} \left\{ \frac{e}{2} x + x^2 \left[\left(1 + \frac{1}{x} \right)^x - e \right] \right\}.$$
3.
$$\lim_{x \to \infty} x \left[\left(1 + \frac{1}{x} \right)^x - e \ln \left(1 + \frac{1}{x} \right)^x \right].$$
4.
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}.$$
5.
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}.$$
6.
$$\lim_{x \to \infty} \left(x - x^2 \ln \frac{1+x}{x} \right).$$
7.
$$\lim_{x \to \infty} \left[\frac{1}{x} \cdot \frac{a^x - 1}{a - 1} \right]^{\frac{1}{x}}, \text{ where } a > 0 \text{ and } a \neq 1.$$

Solution. 1. Let $f(x) = \left(1 + \frac{1}{x}\right)^x - e$ and $g(x) = \frac{1}{x}$. Then $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$ and

$$f'(x) = \left(1 + \frac{1}{x}\right)^x \left[\ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}\right]$$
 and $g'(x) = -\frac{1}{x^2}$.

Since

$$\lim_{x \to \infty} \frac{\frac{d}{dx} \left[\ln \left(1 + \frac{1}{x} \right) - \frac{1}{1+x} \right]}{\frac{d}{dx} \left(-\frac{1}{x^2} \right)} = \lim_{x \to \infty} \frac{-\frac{1}{x(1+x)^2}}{\frac{2}{x^3}} = -\frac{1}{2},$$

by the fact that $\lim_{x \to \infty} \ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x} = \lim_{x \to \infty} \frac{1}{x^2} = 0$, L'Hôpital's rule implies that

$$\lim_{x \to \infty} \frac{\left[\ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}\right]}{\left(-\frac{1}{x^2}\right)} = \lim_{x \to \infty} \frac{\frac{d}{dx}\left[\ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}\right]}{\frac{d}{dx}\left(-\frac{1}{x^2}\right)} = -\frac{1}{2}.$$
 (*)

Therefore,

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \lim_{x \to \infty} \frac{\left[\ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}\right]}{\left(-\frac{1}{x^2}\right)} = -\frac{e}{2}$$

which, by L'Hôpital's rule again, implies that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = -\frac{e}{2}$$

6. Let $f(x) = 1 - x \ln \frac{1+x}{x}$ and $g(x) = \frac{1}{x}$. Then $x - x^2 \ln \frac{1+x}{x} = \frac{f(x)}{g(x)}$ for all x > 0. It is clear that $\lim_{x \to \infty} g(x) = 0$, and the fact that $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{\frac{1}{x}} = e$ implies that $\lim_{x \to \infty} f(x) = 0$.

Now we compute f' and g' and obtain that

$$f'(x) = -\ln\frac{1+x}{x} - x\frac{d}{dx}\Big[\ln(1+x) - \ln x\Big] = \frac{1}{1+x} - \ln\frac{1+x}{x}$$

and $g'(x) = -\frac{1}{x^2}$. (*) then implies that $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \frac{1}{2}$; thus L'Hôpital's rule shows that

$$\lim_{x \to \infty} \left(x - x^2 \ln \frac{1+x}{x} \right) = \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \frac{1}{2}.$$

7. First we rewrite the function $\left[\frac{1}{x}\frac{a^x-1}{a-1}\right]^{\frac{1}{x}}$ as $\exp\left(\frac{1}{x}\ln\left(\frac{1}{x}\frac{a^x-1}{a-1}\right)\right)$ and by the continuity of exp we first compute

$$\lim_{x \to \infty} \frac{1}{x} \ln \left(\frac{1}{x} \cdot \frac{a^x - 1}{a - 1} \right)$$

Nevertheless, for x > 0 we have $\ln\left(\frac{1}{x} \cdot \frac{a^x - 1}{a - 1}\right) = -\ln x + \ln|a^x - 1| - \ln|a - 1|$. Therefore, by the fact that

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\ln |a - 1|}{x} = 0$$

it suffices to compute $\lim_{x \to \infty} \frac{\ln |a^x - 1|}{x}$.

The case a > 1: In this case, we have $\lim_{x \to \infty} \ln |a^x - 1| = \lim_{x \to \infty} x = \infty$. Moreover,

$$\lim_{x \to \infty} \frac{\frac{d}{dx} \ln |a^x - 1|}{\frac{d}{dx} x} = \lim_{x \to \infty} \frac{a^x \ln a}{a^x - 1} = \lim_{x \to \infty} \left(\ln a + \frac{\ln a}{a^x - 1} \right) = \ln a$$

Therefore, L'Hôpital's rule shows that $\lim_{x\to\infty} \frac{\ln |a^x-1|}{x} = \ln a$ which further implies that

$$\lim_{x \to \infty} \left[\frac{1}{x} \cdot \frac{a^x - 1}{a - 1} \right]^{\frac{1}{x}} = \exp(\ln a) = a$$

The case 0 < a < 1: In this case we have $\lim_{x \to \infty} \ln |a^x - 1| = 0$ and $\lim_{x \to \infty} x = \infty$; thus

$$\lim_{x \to \infty} \frac{\ln |a^x - 1|}{x} = 0.$$

Therefore, $\lim_{x \to \infty} \left[\frac{1}{x} \cdot \frac{a^x - 1}{a - 1} \right]^{\frac{1}{x}} = \exp(0) = 1.$

As a consequence,

$$\lim_{x \to \infty} \left[\frac{1}{x} \cdot \frac{a^x - 1}{a - 1} \right]^{\frac{1}{x}} = \begin{cases} a & \text{if } a > 1, \\ 1 & \text{if } 0 < a < 1. \end{cases}$$

Problem 3. In L'Hôpital's 1696 calculus textbook, he illustrated his rule using the limit of the function

$$f(x) = \frac{\sqrt{2a^3x - x^4} - a\sqrt[3]{a^2x}}{a - \sqrt[4]{ax^3}}$$

as x approaches a, a > 0. Find this limit.

Problem 4. For what values of a and b is the following equations true?

1. $\lim_{x \to 0} \left(\frac{\sin 2x}{x^3} + a + \frac{b}{x^2} \right) = 0.$ 2. $\lim_{x \to 0} \left(\frac{\tan 2x}{x^3} + \frac{a}{x^2} + \frac{\sin bx}{x} \right) = 0.$

Proof. 2. Using the limit $\lim_{x \to \infty} \frac{\sin x}{x} = 0$, we find that $\lim_{x \to 0} \frac{\sin bx}{x} = b$. Therefore,

$$\lim_{x \to 0} \left(\frac{\tan 2x}{x^3} + \frac{a}{x^2} \right) = -b. \tag{(**)}$$

Since $\frac{\tan 2x}{x^3} + \frac{a}{x^2} = \frac{\tan 2x + ax}{x^3}$, if a = -2, then the facts that $\lim_{x \to 0} (\tan 2x - 2x) = \lim_{x \to 0} x^3 = 0$ and

$$\lim_{x \to 0} \frac{\frac{d}{dx}(\tan 2x - 2x)}{\frac{d}{dx}x^3} = \lim_{x \to 0} \frac{2\sec^2 2x - 2}{3x^2} = \frac{2}{3}\lim_{x \to 0} \frac{1 - \cos^2 2x}{x^2\cos^2 2x} = \frac{8}{3}\lim_{x \to 0} \frac{1 + \cos 2x}{\cos^2 2x} \cdot \frac{1 - \cos 2x}{4x^2}$$
$$= \frac{8}{3},$$

where we have used the limit $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$ to conclude that last equality. L'Hôpital's Rule then implies that

$$\lim_{x \to 0} \left(\frac{\tan 2x}{x^3} + \frac{-2}{x^2} \right) = \frac{8}{3}$$

On the other hand, if $a \neq -2$, by the computation above we have

$$\lim_{x \to 0} \left(\frac{\tan 2x}{x^3} + \frac{a}{x^2} \right) = \lim_{x \to 0} \left(\frac{\tan 2x}{x^3} + \frac{-2}{x^2} + \frac{a+2}{x^2} \right) = \frac{8}{3} + \lim_{x \to 0} \frac{a+2}{x^2}$$

which does not exists, a contradiction to $(\star\star)$. Therefore, a = -2 and $b = -\frac{8}{3}$.

Problem 5. Show that $\lim_{x\to\infty} x^{x^{-n}} = 1$ for every positive integer *n*.

Problem 6. Let $f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

- 1. Find f'(0). Is f continuously differentiable?
- 2. Show that f has derivatives of all orders on \mathbb{R} ; that is, f is infinitely many times differentiable on \mathbb{R} .

Hint: First show by induction that there is a polynomial $p_n(x)$ and a non-negative integer k_n such that $f^{(n)}(x) = \frac{p_n(x)f(x)}{x^{k_n}}$ for $x \neq 0$.

Proof. 1. By the definition of the derivative,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x}$$

Since $\lim_{y \to \pm \infty} e^{y^2} = \infty$, $\lim_{y \to \pm \infty} y = \pm \infty$ and

$$\lim_{y \to \pm \infty} \frac{\frac{d}{dy}y}{\frac{d}{dy}e^{y^2}} = \lim_{y \to \pm \infty} \frac{1}{2ye^{y^2}} = 0, \qquad (\star\star\star)$$

L'Hôpital's Rule shows that

 $\lim_{x \to 0^+} \frac{e^{-1/x^2}}{x} = \lim_{y \to \infty} \frac{e^{-y^2}}{1/y} = \lim_{y \to \infty} \frac{y}{e^{y^2}} = 0 \quad \text{and} \quad \lim_{x \to 0^-} \frac{e^{-1/x^2}}{x} = \lim_{y \to -\infty} \frac{e^{-y^2}}{1/y} = \lim_{y \to -\infty} \frac{y}{e^{y^2}} = 0.$

Therefore, $\lim_{x \to 0} \frac{e^{-1/x^2}}{x} = 0$ so that f'(0) = 0.

On the other hand, if $x \neq 0$, we can apply the chain rule to find that

$$f'(x) = \frac{d}{dx} \exp\left(-\frac{1}{x^2}\right) = \exp\left(-\frac{1}{x^2}\right) \frac{d}{dx} \left(-\frac{1}{x^2}\right) = \frac{2}{x^3} e^{-1/x^2}$$

Therefore,

$$f'(x) = \begin{cases} \frac{2}{x^3} e^{-1/x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

To see if f is continuously differentiable, it suffices to check if $\lim_{x\to 0} f'(x) = f'(0)$ since it is obviously that f' is continuous on $\mathbb{R}\setminus\{0\}$. Nevertheless, by the facts that $\lim_{y\to\pm\infty} y^3 = \pm\infty$, $\lim_{y\to\pm\infty} e^{y^2} = \infty$ and

$$\lim_{y \to \pm \infty} \frac{\frac{d}{dy} y^3}{\frac{d}{dy} e^{y^2}} = \lim_{y \to \pm \infty} \frac{3y^2}{2y e^{y^2}} = \frac{3}{2} \lim_{y \to \pm \infty} \frac{y}{e^{y^2}} = 0,$$

where the last equality is concluded from $(\star\star\star)$, L'Hôpital's Rule implies that

$$\lim_{x \to 0^+} \frac{2e^{-1/x^2}}{x^3} = \lim_{y \to \infty} \frac{2y^3}{e^{y^2}} = 0 \quad \text{and} \quad \lim_{x \to 0^-} \frac{e^{-1/x^2}}{x} = \lim_{y \to -\infty} \frac{2y^3}{e^{y^2}} = 0$$

Therefore, $\lim_{x\to 0} f'(x) = 0 = f'(0)$ which shows that f is continuously differentiable.

2. Clearly f is infinitely many times differentiable on $\mathbb{R}\setminus\{0\}$. It suffices to show that $f^{(k)}(0)$ exists for all $k \in \mathbb{N}$. In fact, in the following we prove that $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. We prove by claiming that

for each $n \in \mathbb{N}$ there exist a polynomial p_n satisfying $p_n(0) \neq 0$ and a natural number k_n such that $f^{(n)}(x) = \frac{p_n(x)f(x)}{x^{k_n}}$ for $x \neq 0$.

Nevertheless, from part 1 we have $p_1(x) = 2$ and $k_1 = 2$. Now suppose that $f^{(n)}(x) = \frac{p_n(x)f(x)}{x^{k_n}}$ for $x \neq 0$ for some polynomial p_n satisfying $p_n(0) \neq 0$ and natural number k_n . Then for $x \neq 0$,

$$f^{(n+1)}(x) = \frac{d}{dx} \frac{p_n(x)e^{-1/x^2}}{x^{k_n}} = \frac{\left[p'_n(x)e^{-1/x^2} + p_n(x) \cdot \frac{2}{x^3}e^{-1/x^2}\right]x^{k_n} - k_n x^{k_n-1}p_n(x)e^{-1/x^2}}{x^{2k_n}}$$
$$= \frac{\left[x^3p'_n(x) + 2p_n(x) - k_n x^2 p_n(x)\right]e^{-1/x^2}}{x^{k_n+3}} \equiv \frac{p_{n+1}(x)e^{-1/x^2}}{x^{k_n+3}},$$

where $p_{n+1}(x) = x^3 p'_n(x) + 2p_n(x) - k_n x^2 p_n(x)$ is a polynomial satisfying $p_{n+1}(0) = 2p_n(0) \neq 0$, and $k_{n+1} = k_n + 3$.

Next we claim that

 $\lim_{y \to \pm \infty} \frac{y^{m-1}}{e^y} = 0 \tag{(\diamond)}$

for all $m \in \mathbb{N}$. Clearly (\diamond) holds for m = 1. Suppose that (\diamond) holds for m = n. Then for m = n + 1, by the fact that

$$\lim_{y \to \pm \infty} \frac{\frac{d}{dy} y^n}{\frac{d}{dy} e^y} = \lim_{y \to \pm \infty} \frac{n y^{n-1}}{e^y} = 0 \,,$$

where the last equality follows from the induction hypothesis. Therefore, L'Hôpital's Rule implies that

$$\lim_{y \to \pm \infty} \frac{y^n}{e^y} = 0$$

which shows that (\diamond) holds for m = n + 1. By induction, we find that (\diamond) holds for all $m \in \mathbb{N}$. Finally we prove $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$ by induction. From part 1 we find that f'(0) = 0. Suppose that $f^{(n)}(0) = 0$. Then

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x} = \lim_{x \to 0} \frac{p_n(x)f(x)}{x^{k_n+1}}.$$

Similar to part 1, we consider two one-sided limits $\lim_{x\to 0^+} \frac{p_n(x)f(x)}{x^{k_n+1}}$ and $\lim_{x\to 0^-} \frac{p_n(x)f(x)}{x^{k_n+1}}$. Suppose that $p_n(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$, where $a_0 \neq 0$. Then

$$\lim_{x \to 0^+} \frac{f(x)}{x^{k_n+1}} = \lim_{y \to \infty} \frac{y^{k_n+1}}{e^{y^2}} = \lim_{y \to \infty} \frac{1}{e^{y^2-y}} \lim_{y \to \infty} \frac{y^{k_n+1}}{e^y} = 0$$

so that

$$\lim_{x \to 0^+} \frac{p_n(x)f(x)}{x^{k_n+1}} = p_n(0) \lim_{x \to 0^+} \frac{f(x)}{x^{k_n+1}} = 0.$$

Similarly, $\lim_{x\to 0^-} \frac{p_n(x)f(x)}{x^{k_n+1}} = 0$; thus $f^{(n+1)}(0) = 0$. By induction we conclude that $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$.