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Chapter 10

Vectors and the Geometry of Space

10.1 Preliminaries

In this section we review some of the materials from the high school (or even linear algebra).
First we consider vectors in the plane. We let i (or e1) and j (or e2) denote the vectors
(1, 0) and (0, 1), respectively. Any vectors v in the plane can be written as v = v1 i + v2 j.
For two vectors u = u1 i + u2 j and v = v1 i + v2 j, the dot product of u and v, denoted by
u ¨ v, is defined by

u ¨ v = u1v1 + u2v2 =
2
ÿ

j=1

ujvj .

Let θ denote the angle between two non-zero vectors u and v. The law of cosines then
implies that

u ¨ v = }u}}v} cos θ ,

where }u} =
a

u2
1 + u2

2 and }v} =
a

v21 + v22 denote the length of vectors u and v, respec-
tively.

Similar ideas can be extended for vectors in space. Let i, j, k denote the vectors

i = (1, 0, 0) ” e1 , j = (0, 1, 0) ” e2 and k = (0, 0, 1) ” e3 .

The standard unit vector notation for a vector v in space is

v = v1 i+ v2 j+ v3k = v1e1 + v2e2 + v3e3 =
3
ÿ

j=1

vjej .
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For two vectors u = u1 i + u2 j + u3 and v = v1 i + v2 j + v3k, the dot product of u and v,
again denoted by u ¨ v, is defined by

u ¨ v = u1v1 + u2v2 + u3v3 =
3
ÿ

j=1

ujvj .

If θ denote the angle between u and v when u,v are non-zero vectors, then the law of
cosines also implies that

u ¨ v = }u}}v} cos θ , (10.1.1)

where }u} =
a

u2
1 + u2

2 + u2
3 and }v} =

a

v21 + v22 + v23 again denote the length of vectors u
and v, respectively.

10.2 The Cross Product of Two Vectors in Space
Definition 10.1

Let u = u1 i + u2 j + u3k and v = v1 i + v2 j + v3k be vectors in space. The cross
product of u and v, denoted by u ˆ v, is the vector

u ˆ v = (u2v3 ´ u3v2)i+ (u3v1 ´ u1v3) j+ (u1v2 ´ u2v1)k .

Remark 10.2. Using the notation of determinant, the cross product of u and v can be
computed as

u ˆ v =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k
u1 u2 u3

v1 v2 v3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Remark 10.3. A sequence (k1, k2, ¨ ¨ ¨ , kn) of positive integers not exceeding n, with the
property that no two of the ki are equal, is called a permutation of degree n. The
collection of all permutations of degree n is denoted by P(n). For 1 ď i, j ď n and i ‰ j, the
operator τ(i,j) interchange the i-th and j-th elements of a sequence in P(n). For example, if
n = 3, the permutation (3, 1, 2) can be obtained by interchanging pairs of (1, 2, 3) twice:

(1, 2, 3)
τ(1,3)
ÝÑ (3, 2, 1)

τ(2,3)
ÝÑ (3, 1, 2);

thus (3, 1, 2) is called an even permutation of (1, 2, 3). On the other hand, (1, 3, 2) is obtained
by interchanging pairs of (1, 2, 3) once:

(1, 2, 3)
τ(2,3)
ÝÑ (1, 3, 2);



thus (1, 3, 2) is an odd permutation of (1, 2, 3).
For n = 3, the even and odd permutations can also be viewed as the orientation of the

permutation (k1, k2, k3). To be more precise, if (1, 2, 3) is arranged in a counter-clockwise
orientation (see Figure 10.1), then an even permutation of degree 3 is a permutation in the
counter-clockwise orientation, while an odd permutation of degree 3 is a permutation in the
clockwise orientation. From figure 10.1, it is easy to see that (3, 1, 2) is an even permutation
of degree 3 and (1, 3, 2) is an odd permutation of degree 3.

Odd permutationsEven permutations

1

2 3

1

2 3

Figure 10.1: Even and odd permutations of degree 3

The permutation symbol is a function on P(n) defined by

εk1k2¨¨¨kn =

#

1 if (k1, k2, ¨ ¨ ¨ , kn) is an even permutation of (1, 2, ¨ ¨ ¨ , n) ,

´1 if (k1, k2, ¨ ¨ ¨ , kn) is an odd permutation of (1, 2, ¨ ¨ ¨ , n) .

In general, one can define

εk1k2¨¨¨kn =

$

’

&

’

%

1 if (k1, k2, ¨ ¨ ¨ , kn) is an even permutation of (1, 2, ¨ ¨ ¨ , n) ,

´1 if (k1, k2, ¨ ¨ ¨ , kn) is an odd permutation of (1, 2, ¨ ¨ ¨ , n) ,

0 otherwise .

Using the permutation symbol, we have

u ˆ v =
3
ÿ

i,j,k=1

εijkujvkei =
3
ÿ

i=1

( 3
ÿ

j,k=1

εijkujvk

)
ei , (10.2.1)

where u = (u1, u2, u3) and v = (v1, v2, v3). In other words, the i-th component of u ˆ v is
3
ř

j,k=1

εijkujvk.

In the following, for simplicity we let (u ˆ v)i denote the i-th component of the vector
u ˆ v. In other words,

(u ˆ v)i =
3
ÿ

j,k=1

εijkujvk .



Theorem 10.4
Let u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) be vectors in space, and c

be a scalar.

(a) u ˆ v = ´(v ˆ u).

(b) u ˆ (v+w) = (u ˆ v) + (u ˆ w).

(c) c(u ˆ v) = (cu) ˆ v = u ˆ (cv).

(d) u ˆ 0 = 0 ˆ u = 0.

(e) u ˆ u = 0.

(f) u ¨ (v ˆ w) = (u ˆ v) ¨ w.

We note that (b) and (c) can be simplified as

u ˆ (cv+ dw) = c(u ˆ v) + d(u ˆ w) @ vectors in space u, v ,w and scalars c, d.

Proof of Theorem 10.4. We provide two proofs for (f), and the others are left as exercise.

1. Since v ˆ w = (v2w3 ´ v3w2)i + (v3w1 ´ v1w3) j + (v1w2 ´ v2w1)k and u ˆ v =

(u2v3 ´ u3v2)i+ (u3v1 ´ u1v3) j+ (u1v2 ´ u2v1)k, we find that

u ¨ (v ˆ w) = u1(v2w3 ´ v3w2) + u2(v3w1 ´ v1w3) + u3(v1w2 ´ v2w1)

= w1(u2v3 ´ u3v2) + w2(u3v1 ´ u1v3) + w3(u1v2 ´ u2v1)

= w ¨ (u ˆ v) = (u ˆ v) ¨ w .

2. Using (10.2.1) and the fact that εijk = εkij,

u ¨ (v ˆ w) =
3
ÿ

i=1

ui

3
ÿ

j,k=1

εijkvjwk =
3
ÿ

i,j,k=1

εijkuivjwk =
3
ÿ

k=1

wk

3
ÿ

i,j=1

εkijuivj

=
3
ÿ

k=1

wk(u ˆ v)k = w ¨ (u ˆ v) .

Lemma 10.5

Let δij be the Kronecker delta defined by δij =

"

1 if i = j ,

0 if i ‰ j .
Then

3
ÿ

i=1

εijkεirs = δjrδks ´ δjsδkr . (10.2.2)



Theorem 10.6: Geometric properties of the cross product
Let u and v be non-zero vectors in space, and let θ be the angle between u and v.

(a) u ˆ v is orthogonal to both u and v.

(b) }u ˆ v} = }u}}v} sin θ.

(c) u ˆ v = 0 if and only if u and v are scalar multiples of each other.

(d) }u ˆ v} is the area of parallelogram having u and v as adjacent sides.

Proof. We only prove (b). Using (10.2.2),

}u ˆ v}2 = (u ˆ v) ¨ (u ˆ v) =
3
ÿ

i=1

(u ˆ v)i(u ˆ v)i =
3
ÿ

i=1

( 3
ÿ

j,k=1

εijkujvk

)( 3
ÿ

r,s=1

εirsurvs

)
=

3
ÿ

i,j,k,r,s=1

εijkεirsujvkurvs =
n
ÿ

j,k,r,s=1

( 3
ÿ

i=1

εijkεirs

)
ujvkurvs

=
3
ÿ

j,k,r,s=1

(δjrδks ´ δjsδkr)ujvkurvs =
3
ÿ

j,k=1

[
u2
jv

2
k ´ (ujvj)(ukvk)

]
=

( 3
ÿ

j=1

u2
j

)( 3
ÿ

k=1

v2k

)
´

( 3
ÿ

j=1

ujvj

)( 3
ÿ

k=1

ukvk

)
= }u}2}v}2 ´ |u ¨ v|2 .

Using (10.1.1), we find that

}u ˆ v}2 = }u}2}v}2 ´ |u ¨ v|2 = }u}2}v}2 ´ }u}2}v}2 cos2 θ = }u}2}v}2 sin2 θ

which concludes (b).

Definition 10.7: Triple Scalar Product
For vectors u, v and w in space, the dot product of u and v ˆ w is called the triple
scalar product (of u, v, w).

Theorem 10.8
For u = u1 i + u2 j + u3k, v = v1 i + v2 j + v3k and w = w1 i + w2 j + w3k, the triple
scalar product u ¨ (v ˆ w) is

u ¨ (v ˆ w) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.



Theorem 10.9
The volume V of a parallelepiped with vectors u, v, and w as adjacent edges is

V =
ˇ

ˇ(u ˆ v) ¨ w
ˇ

ˇ =
ˇ

ˇu ¨ (v ˆ w)
ˇ

ˇ.

Figure 10.2: The number |(u ˆ v) ¨ w| is the volume of a parallelepiped.

10.2.1 Alternative definition of the cross product

We start with two nonzero vectors u and v in space. If u and v are not parallel, they
determine a plane. We select a unit vector n perpendicular to the plane by the right-hand
rule; that is, the unit normal vector n points the way your right thumb points when your
fingers curl through the angle θ from u to v (figure 10.3).

Figure 10.3: The construction of u ˆ v

Then we define a new vector as follows.



Definition 10.10
Let u and v be vectors in space, θ be the angle between u and v, and n be a unit
vector defined by the right-hand rule. The cross product u ˆ v is the vector

u ˆ v = }u}}v} sin θn .

We note that if u and v are parallel, then n is not well-defined; however, in this case
θ = 0 or π so that sin θ = 0; thus the definition above suggests that u ˆ v = 0 if u and v
are parallel. This is indeed the case we should have in mind.

Using this definition of the cross product, properties (a)(c)(d)(e) in Theorem 10.4 clearly
hold. For example, property (a) can be visualized by the following figure

Figure 10.4: The construction of u ˆ v

In the following, we prove (b) in Theorem 10.4 under this alternative definition of cross
product. To derive (b), we construct u ˆ v in a new way (see Figure 10.5 for reference).

Figure 10.5: As explained in the text, u ˆ v = }u}}v 11}. (The primes used here are purely
notational and do not denote derivatives.)



We draw u and v from the common point O and construct a plane M perpendicular to
u at O. We then project v orthogonally onto M , yielding a vector v 1 with length }v} sin θ.
We rotate v 1 90° about u in the positive sense to produce a vector v 11. Finally, we multiply
v 11 by the length of u. The resulting vector }u}v 11 is equal to u ˆ v since v 11 has the same
direction as u ˆ v by its construction and

}u}}v 11} = }u}}v 1} = }u}}v} sin θ = }u ˆ v} .

Now each of these three operations, namely,

1. projection onto M ,

2. rotation about u through 90°,

3. multiplication by the scalar }u},

when applied to a triangle whose plane is not parallel to u, will produce another triangle.
If we start with the triangle whose sides are v, w, and v+w (Figure 10.6) and apply these
three steps, we successively obtain the following:

1. A triangle whose sides are v 1, w 1, and (v+w) 1 satisfying the vector equation

v 1 +w 1 = (v+w) 1 .

2. A triangle whose sides are v 11, w 11, and (v+w) 11 satisfying the vector equation

v 11 +w 11 = (v+w) 11 .

3. A triangle whose sides are }u}v 11, }u}w 11, and }u}(v + w) 11 satisfying the vector
equation

}u}v 11 + }u}w 11 = }u}(v+w) 11 .

Figure 10.6: The vectors, v, w, v+w, and their projections onto a plane perpendicular to
u.



Substituting }u}v 11 = u ˆ v, }u}w 11 = u ˆ w, and }u}(v + w) 11 = u ˆ (v + w) from our
discussion above into this last equation gives uˆv+uˆw = uˆ (v+w), which is the law
we wanted to establish.

When we apply the definition to calculate the pairwise cross products of i, j, and k, we
find that i ˆ j = k, j ˆ k = i and k ˆ i = j.

Figure 10.7: The pairwise cross products of i, j, and k.

Having establishing (b) in Theorem 10.4 under the alternative definition of cross product,
we are able to derive the formula for cross product in Definition 10.1:

u ˆ v = (u1 i+ u2 j+ u3k) ˆ (v1 i+ v2 j+ v3k)
= u1v2(i ˆ j) + u1v3(i ˆ k) + u2v1( j ˆ i) + u2v3( j ˆ k) + u3v1(k ˆ i) + u3v2(k ˆ j)
= (u2v3 ´ u3v2)i+ (u3v1 ´ u1v3) j+ (u1v2 ´ u2v1)k .

10.3 Polar Coordinate
In this section we review the polar coordinate (on the plane) that we introduction in Remark
0.8 and make some extensions. To form the polar coordinate system in the plane, fix a point
O, called the pole (or origin), and construct from O an initial ray called the polar axis, as
shown in Figure 10.8.

Figure 10.8: Polar coordinate



Then each point P in the plane can be assigned polar coordinates (r, θ), also called the polar
representation of P , as follows.

r = distance from O to P ,
θ = angle (in [0, 2π)) measured counterclockwise from polar axis to segment OP .

Let the polar axis as the positive x-axis on the plane (that is, let i or e1 denote the unit
vector pointing in the direction of the polar axis), and j or e2 be the unique unit vector
in the plane obtained by rotating i counterclockwise by angle π

2
. Then every point P in

the plane can be expressed as an ordered pair (x, y) in the way that the vector ÝÝÑ
OP can be

expressed as xe1 + ye2. In other words, (x, y) is the Cartesian coordinate of P with e1 and
e2 being the unit vectors on the x-axis and y-axis of the plane. If P ‰ O, and (x, y), (r, θ)
are the Cartesian and polar coordinate of P , respectively, then we have

x = r cos θ , y = r sin θ , (10.3.1a)

r =
a

x2 + y2 , θ =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

arctan y

x
if x ą 0 ,

π

2
if x = 0 and y ą 0 ,

π + arctan y

x
if x ă 0 ,

3π

2
if x = 0 and y ă 0 .

(10.3.1b)

(10.3.1a) is sometimes called the polar-to-rectangular and (10.3.1b) is sometimes called
the rectangular-to-polar (coordinate) conversion. Note that the polar coordinate gives
an one-to-one correspondence between the region (0,8) ˆ [0, 2π) and the plane with the
origin removed.

Remark 10.11. Often time we use the region [0,8) ˆ [0, 2π] on the rθ-plane to denote
the set to which (r, θ) belongs. The segment t0u ˆ [0, 2π] is treated as the origin (of the
xy-plane), while the ray [0,8) ˆ t0u and [0,8) ˆ t2πu both represent x-axis.

Such as some rectangular regions can be easily represented using the Cartesian coordinate
(for example, [a, b] ˆ [c, d] represents a rectangle), some special regions in the plane can be
easily represented using the polar coordinate.

Example 10.12. The sector enclosed by the circle with radius r0 and two radii θ = θ0 and
θ = θ1 can be expressed as (r, θ) P [0, r0] ˆ [θ0, θ1].



Curves in the region [0,8) ˆ [0, 2π] of the rθ-plane corresponds to curves in xy-plane
through relation (10.3.1a). For example, the line segment t1u ˆ [0, 2π] (or simply r = 1)
corresponds to the unit circle centered at the origin, and the ray [0,8) ˆ tθ0u (or simply
θ = θ0) corresponds to the ray to which the angle measured from the polar axis is θ0.

Example 10.13. The curve r = cos θ in the region [0,8)ˆ [0, 2π] corresponds to the circle
x2 + y2 = x in the xy-plane.

As we did not distinguish the angle 0 and 2π, we should not distinguish any θ with all
θ + 2kπ (k P Z). In general, for a given point P = (x, y) in Cartesian coordinate system,
we should treat (r, θ) as the polar coordinate of P as long as (r, θ) satisfies (10.3.1a). This
includes the possibility that r is negative since

(r cos θ, r sin θ) =
(
(´r) cos(θ + π), (´r) sin(θ + π)

)
which means if (r, θ) is a polar representation of P , then (´r, θ + π) is also a polar repre-
sentation of P .

To be more precise, the polar coordinate (r, θ) of a point P satisfies

r = “directed” distance from O to P ,
θ = “directed” angle measured counterclockwise from polar axis to segment OP .

We note under this convention, each point have infinitely many polar representation.

Remark 10.14. 想像你身處原點，然後你的前方是 x 軸的正方向，而座標軸上有標記單

位。現在在你前方放一面鏡子，而有另一個人出現在你的後方立於座標軸上的 ´2 這個

位置。你所看到的是，在你的「前方」有一個位置在 ´2 的人，所以你很快速地標記他的

極座標為 (´2, 0)。在此 ´2 即為所謂的 directed distance 而 0 是 directed angle。directed
distance 的正負號取決於你要不要在你觀察的那個 θ 方向加一面鏡子。

From now on, the polar coordinate, given the pole and the polar axis, refers
to this non-unique polar representation of points in the plane.
Theorem 10.15

The polar coordinates (r, θ) of a point are relation to the Cartesian coordinates (x, y)

of the point as follows.

Polar-to-Rectangular Rectangular-to-Polar
x = r cos θ tan θ =

y

x
y = r sin θ r2 = x2 + y2



10.4 Cylindrical and Spherical Coordinates
10.4.1 The cylindrical coordinate
Definition 10.16

In a cylindrical coordinate system, a point P in space is presented by an ordered triple
(r, θ, z) such that

1. (r, θ) is a polar representation of the projection of P in the xy-plane.
2. z is the directed distance from (r, θ) to P .

Figure 10.9: Cylindrical coordinate

The point (0, 0, 0) is called the pole. Moreover, because the presentation of a point in the
polar coordinate system is not unique, it follows that the representation in the cylindrical
coordinate system is also not unique.

We have the coordinate conversion formula:
1. Cylindrical to rectangular: x = r cos θ, y = r sin θ, z = z.

2. Rectangular to cylindrical: r2 = x2 + y2, tan θ =
y

x
, z = z.

10.4.2 The spherical coordinate
Definition 10.17

In a spherical coordinate system, a point P in space is represented by an ordered
triple (ρ, θ, ϕ) such that

1. ρ is the distance between P and the origin (so ρ ě 0).
2. θ is the same angle used in cylindrical coordinates for r ě 0.
3. ϕ is the angle between the positive z-axis and the line segment OP (so ϕ P [0, π]).

Note that the first and third coordinates, ρ and ϕ, are nonnegative.



Figure 10.10: Spherical coordinate

The collection of all points whose “spherical representation” has the same ρ ą 0 is the
sphere center at the origin with radius ρ. Therefore, for fixed ρ ą 0 the (θ, ϕ) coordinate
system can be used to represent points on the sphere (centered at the origin with radius ρ)
which is similar to the latitude-longitude system used to identify points on the surface of
Earth. In fact, for ρ = 6371 kilometer (which is the radius of Earth), with the convention
“north is positive and south is negative”, “east is positive and west is negative”, then θ is the
latitude and π

2
´ϕ is the longitude

(
here θ = 0 and θ = π correspond to the prime meridian

(本初子午線) and the international date line (國際換日線), respectively, if θ P (´π, π]
)
.

We have the coordinate conversion formula:

1. Spherical to rectangular: x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ.

2. Rectangular to spherical: ρ2 = x2 + y2 + z2, tan θ =
y

x
, ϕ = arccos z

a

x2 + y2 + z2
.

We can also convert the spherical coordinate to cylindrical coordinate and vice versa, by
the following conversion formula:

1. Spherical to cylindrical: r2 = ρ2 sin2 ϕ, θ = θ, z = ρ cosϕ.

2. Cylindrical to spherical: ρ =
?
r2 + z2, θ = θ, ϕ = arccos z

?
r2 + z2

.



Chapter 12

Vector-Valued Functions

12.1 Vector-Valued Functions of One Variable
Definition 12.1

A function of the form

r(t) = f(t)i+ g(t) j or r(t) = f(t)i+ g(t) j+ h(t)k

is a vector-valued function of one variable, where the component function f, g and h

are real-valued functions of the parameter t. Using the vector notation, vector-valued
functions above are sometimes denoted by

r(t) =
(
f(t), g(t)

)
or r(t) =

(
f(t), g(t), h(t)

)
.

Remark 12.2. When r is a vector-valued function, we automatically assume that its com-
ponents f , g (and h) have a common domain.

Definition 12.3: Limit of Vector-Valued Functions

1. If r is a vector-valued function such that r(t) = f(t)i+ g(t) j, then

lim
tÑa

r(t) =
(

lim
tÑa

f(t)
)
i+

(
lim
tÑa

g(t)
)
j

provided that the limits lim
tÑa

f(t) and lim
tÑa

g(t) exist.

2. If r is a vector-valued function such that r(t) = f(t)i+ g(t) j+ h(t)k, then

lim
tÑa

r(t) =
(

lim
tÑa

f(t)
)
i+

(
lim
tÑa

g(t)
)
j+

(
lim
tÑa

h(t)
)
k

provided that the limits lim
tÑa

f(t), lim
tÑa

g(t) and lim
tÑa

h(t) exist.
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Remark 12.4. Using the ϵ-δ language, the limit of a vector-valued function r is defined as
follows: Let I be the domain of r. The notation lim

tÑa
r(t) = L means for every ε ą 0 there

exists δ ą 0 such that }r(t) ´ L} ă ε whenever 0 ă |t ´ a| ă δ and t P I.

Definition 12.5: Continuity of Vector-Valued Functions

A vector-valued function r is said to be continuous at a point a if the limit lim
tÑa

r(t)
exists and lim

tÑa
r(t) = r(a).

Definition 12.6: Differentiation of Vector-Valued Functions
The derivative of a vector-valued function r at a point a is

r 1(a) = lim
hÑ0

r(a+ h) ´ r(a)
h

provided that the limit above exists. If r 1(a) exists, then r is said to be differentiable
at a and r 1(a) is called the derivative of r at a. If r 1(t) exists for all t in an interval
I, then r is said to be differentiable on the interval I.

Theorem 12.7

1. If r is a vector-valued function such that r(t) = f(t)i+ g(t) j, then

r 1(a) = f 1(a)i+ g 1(a) j

provided that f 1(a) and g 1(a) exist.
2. If r is a vector-valued function such that r(t) = f(t)i+ g(t) j+ h(t)k, then

r 1(a) = f 1(a)i+ g 1(a) j+ h 1(a)k

provided that f 1(a), g 1(a) and h 1(a) exist.

Theorem 12.8
Let r and u be differentiable vector-valued functions and f be a differentiable real-
valued function.

(a) d

dt
(fr)(t) = f 1(t)r(t) + fr 1(t). (b) d

dt

[
r(t) ˘ u(t)

]
= r 1(t) ˘ u 1(t).

(c) d

dt

[
r(t) ‹ u(t)

]
= r 1(t) ‹ u(t) + r(t) ‹ u 1(t), where ‹ is the dot product or the

cross product.

(d) d

dt
r
(
f(t)

)
= f 1(t)r 1

(
f(t)

)
.



Proof. We only prove (c) for the case ‹ being the cross product. Write r(t) = r1(t)i +
r2(t) j + r3(t)k and u(t) = u1(t)i + u2(t) j + u3(t)k. By the definition of the cross product,[
r(t) ˆ u(t)

]
i
, the i-th component of r(t) ˆ u(t), is given by

ř

1ďj,kď3

εijkrj(t)uk(t). By the

product rule,

d

dt

[
r(t) ˆ u(t)

]
i
=

d

dt

ÿ

1ďj,kď3

εijkrj(t)uk(t) =
ÿ

1ďj,kď3

εijk
d

dt

[
rj(t)uk(t)

]
=

ÿ

1ďj,kď3

εijk
[
r 1
j(t)uk(t) + rj(t)u

1
j(t)

]
= r 1(t) ˆ u(t) + r(t) ˆ u 1(t) ,

where we have used r 1(t) = r 1
1(t)i+ r 1

2(t) j+ r 1
3(t)k and u 1(t) = u 1

1(t)i+ u 1
2(t) j+ u 1

3(t)k to
conclude the last equality.

Remark 12.9. The proof presented above in fact can be used to show that

d

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11(t) a12(t) a13(t)

a21(t) a22(t) a23(t)

a31(t) a32(t) a33(t)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a 1
11(t) a 1

12(t) a 1
13(t)

a21(t) a22(t) a23(t)

a31(t) a32(t) a33(t)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11(t) a12(t) a13(t)

a 1
21(t) a 1

22(t) a 1
23(t)

a31(t) a32(t) a33(t)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11(t) a12(t) a13(t)

a21(t) a22(t) a23(t)

a 1
31(t) a 1

32(t) a 1
33(t)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

since the determinant of A =
[
aij(t)

]
1ďi,jď3

is given by
ř

1ďi,j,kď3

εijka1i(t)a2j(t)a3k(t). The

formula above shows that the differentiation of determinants is obtained by differentiating
row by row (or column by column).

‚ Integration of vector-valued functions of one variable

Similar to the differentiation of vector-valued functions which mimics the differentiation of
real-valued functions, we can also define the Riemann integral of a vector-valued function r
on [a, b] as the “limit” of the Riemann sum

n
ÿ

k=1

r(ξk)(tk ´ tk´1) , (12.1.1)

where ta = t0 ă t1 ă ¨ ¨ ¨ ă tn = bu is a partition of [a, b]. To be more precise, a vector-
valued function r : [a, b] Ñ Rd, where d = 2 or 3, is said to be Riemann integrable on
[a, b] if there exists a vector A such that for all ε ą 0 there exists δ ą 0 such that if
P = ta = t0 ă t1 ă ¨ ¨ ¨ ă tn = bu is a partition of [a, b] satisfying }P} ă δ, any Riemann



sum of r for P (given by (12.1.1)) locates in (A ´ ε,A + ε), where the vector A ˘ ε is the
vector obtained by adding or subtracting ε from each component of A. The vector A, if

exists, is written as
ż b

a
r(t) dt. Since the limit of a vector-valued function can be computed

componentwise, we have the following
Theorem 12.9

1. If r is a vector-valued function such that r(t) = f(t)i+ g(t) j, then
ż b

a

r(t) dt =
( ż b

a

f(t)dt
)
i+

( ż b

a

g(t) dt
)
j

provided that
ż b

a
f(t) dt and

ż b

a
g(t) dt exist.

2. If r is a vector-valued function such that r(t) = f(t)i+ g(t) j+ h(t)k, then
ż b

a

r(t) dt =
( ż b

a

f(t)dt
)
i+

( ż b

a

g(t) dt
)
j+

( ż b

a

h(t) dt
)
k

provided that
ż b

a
f(t) dt,

ż b

a
g(t) dt and

ż b

a
h(t) dt exist.

The Fundamental Theorem of Calculus provides a way to compute the definite integral of
vector-valued functions, and this enables us to define the indefinite integral of vector-valued
functions as follows.
Definition 12.10

1. If r is a vector-valued function such that r(t) = f(t)i+g(t) j, then the indefinite
integral (anti-derivative) of r is

ż

r(t) dt =
( ż

f(t)dt
)
i+

( ż
g(t) dt

)
j

provided that
ż

f(t) dt and
ż

g(t) dt exist.

2. If r is a vector-valued function such that r(t) = f(t)i+ g(t) j+ h(t)k, then the
indefinite integral (anti-derivative) of r is

ż

r(t) dt =
( ż

f(t)dt
)
i+

( ż
g(t) dt

)
j+

( ż
h(t) dt

)
k

provided that
ż

f(t) dt,
ż

g(t) dt and
ż

h(t) dt exist.



Having defined the indefinite integral of vector-valued functions, by the Fundamental
Theorem of Calculus and Theorem 12.7 we have

d

dt

ż

r(t) dt = r(t)

as long as r is continuous.

12.2 Curves and Parametric Equations
Definition 12.11

A subset C in the plane (or space) is called a curve if C is the image of an interval
I Ď R under a continuous vector-valued function r. The continuous function r : I Ñ

R2 (or R3) is called a parametrization of the curve, and the equation

(x, y) = r(t) , t P I
(
or (x, y, z) = r(t), t P I

)
is called a parametric equation of the curve. A curve C is called a plane curve
if it is a subset in the plane.

Since a plane can be treated as a subset of space, in the following we always assume that
the curve under discussion is a curve in space (so that the parametrization of the curve is
given by r : I Ñ R3).
Definition 12.12

A curve C is called simple if it has an injective parametrization; that is, there exists
r : I Ñ R3 such that r(I) = C and r(x) = r(y) implies that x = y. A curve
C with parametrization r : I Ñ R3 is called closed if I = [a, b] for some closed
interval [a, b] Ď R and r(a) = r(b). A simple closed curve C is a closed curve with
parametrization r : [a, b] Ñ R3 such that r is one-to-one on (a, b). A smooth curve
C is a curve with differentiable parametrization r : I Ñ R3 such that r 1(t) ‰ 0 for
all t P I.

Example 12.13. The parabola y = x2 + 2 on the plane is a simple smooth plane curve
since r : R Ñ R2 given by r(t) = ti+ (r2 +2) j is an injective differentiable parametrization
of this parabola. We note that rr :

(
´

π

2
,
π

2

)
Ñ R2 given by rr(t) = tan ti + (sec2 t + 1) j is

also an injective smooth parametrization of this parabola. In general, a curve usually has
infinitely many parameterizations.



Example 12.14. Let I Ď R be an interval, and r : I Ñ R2 be defined by r(t) = cos ti +
sin t j. Since r is continuous and the co-domain is R2, the image of I under r, denoted by C,
is a plane curve. We note that C is part of the unit circle centered at the origin. Moreover,
C is a smooth curve since r 1(t) ‰ 0 for all t P I.

1. If I = [a, b] and |b ´ a| ă 2π, then C is a simple curve.

2. If I = [0, 2π], then C is not a simple curve. However, C a simple closed curve.

Example 12.15. Let r : [0, 2π] Ñ R2 be defined by r(t) = sin ti + sin t cos t j. The image
r([0, 2π]) is a curve called figure eight.

x

y

Figure 12.1: Figure eight

Example 12.16. Let r : R Ñ R3 be defined by r(t) = cos ti+ sin t j+ tk. Then the image
r(R) is a simple smooth space curve. This curve is called a helix.

In the following, when a parametrization r : I Ñ R3 of curves C is mentioned, we always
assume that “there is no overlap”; that is, there are no intervals [a, b], [c, d] Ď I satisfying
that r([a, b]) = r([c, d]). If in addition

1. C is a simple curve, then r is injective, or

2. C is closed, then I = [a, b] and r(a) = r(b), or

3. C is simple closed, then I = [a, b] and r is injective on [a, b) and r(a) = r(b).

4. C is smooth, then r is differentiable and r 1(t) ‰ 0 for all t P I.

12.2.1 Polar Graphs

In Example 10.13 we talk about one particular correspondence between a curve on the rθ-
plane and a curve on the xy-plane. The equation r = cos θ is called a polar equation which
means an equation in polar coordinate, and the corresponding curve given by the relation
(x, y) = (r cos θ, r sin θ) on the xy-plane is called the polar graph of this polar equation.



Definition 12.17
Let (r, θ) be the polar coordinate. A polar equation is an equation that r and θ

satisfy. The polar graph of a polar equation is the collection of points (r cos θ, r sin θ)

in xy-plane with (r, θ) satisfying the given polar equation.

Remark 12.18. Usually, the polar equation under consideration is of the form

r = f(θ) or θ = g(r)

for some functions f and g. The polar graph of the polar equation r = f(θ) is the
curve parameterized by the parametrization r : R Ñ R2 given by r(t) = f(t) cos ti +
f(t) sin t j (where t is the role of θ), while the polar graph of the polar equation θ = g(r) is
the curve parameterized by the parametrization r : R Ñ R2 given by r(t) = t cos g(t)i +
t sin g(t) j (where t is the role of r).

Example 12.19. 1. The polar graph of the polar equation r = r0, where r0 ‰ 0 is a
constant, is the circle centered at the origin with radius |r0|.

2. The polar graph of the polar equation θ = θ0, where θ0 is a constant, is the straight
line with slope tan θ0.

3. The polar graph of the polar equation r = sec θ is x = 1 (in the xy-plane).

4. The polar graph of the polar equation r = a cos θ, where a is a constant, is the circle

centered at
(a
2
, 0
)

with radius |a|

2
.

5. The polar graph of the polar equation r = a sin θ, where a is a constant, is the circle

centered at
(
0,

a

2

)
with radius |a|

2
.

Example 12.20. A conic section（圓錐曲線）can be defined purely in terms of plane
geometry: it is the locus of all points P whose distance to a fixed point F (called the focus
焦點) is a constant multiple (called the eccentricity e 離心率) of the distance from P to a
fixed line L (called the directrix 準線). For 0 ă e ă 1 we obtain an ellipse, for e = 1 a
parabola, and for e ą 1 a hyperbola.

Now we consider the polar equation whose polar graph represents a conic section. Let
the focus be the pole of a polar coordinate, and the polar axis is perpendicular to the
directrix but does not intersect the directrix. Then the eccentricity e is given by

e =
d(P, F )

d(P,L)
for all points P on the conic section, (12.2.1)



where d(P, F ) is the distance between P and the focus F , and d(P,L) is the distance between
P and the directrix.

Let P denote the distance between the pole and the directrix, and the polar coordinate
of points P on a conic section is (r, θ). Then (12.2.1) implies that

e =
r

r cos θ + P .

Therefore, the polar equation of a conic section with eccentricity e is given by

r =
eP

1 ´ e cos θ .

In general, for a given conic section we let the principal ray denote the ray starting from
the focus, perpendicular to the directrix without intersecting the directrix. Let the focus F
be the pole of a polar coordinate and θ0 be the directed angel from the polar axis to the
principal ray. If (r, θ) is the polar representation of point P on the conic section, then (r, θ)

satisfies
e =

r

r cos(θ ´ θ0) + P or equivalently, r =
eP

1 ´ e cos(θ ´ θ0)
.

Example 12.21 (Limaçons - 蚶線). The polar graph of the polar equation r = a ˘ b cos θ
or r = a˘ b sin θ, where a, b ą 0 are constants, is called a limaçon. A limaçons is also called
a cardioid（心臟線）if a = b.

x

y

a

b
ă 1

x

y

a

b
= 1

x

y

1ă
a

b
ă 2

x

y

a

b
ě 2

Figure 12.2: Limaçons r = a ˘ b cos θ with the ratio a

b
in different regions

(1) There is an inner loop when a

b
ă 1. (2) When a = b it is also called the cardioid.

(3) When 1 ă
a

b
ă 2, the region enclosed by the limaçon is not convex. This kind of limaçons

is called dimpled limaçons. (4) When a

b
ě 2, it is called convex limaçons.

Example 12.22 (Rose curves). The polar graph of the polar equation r = a cosnθ or
r = a sinnθ, where a ą 0 is a given number and n ě 2 is an integer, is called a rose curve.
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y
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n = 5
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n = 6

Figure 12.3: Rose curves r = a cosnθ: n petals when n is odd and 2n petals when n is even
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Figure 12.4: Rose curves r = a sinnθ: n petals when n is odd and 2n petals when n is even

Example 12.23 (Lemniscates - 雙紐線). The polar graph of the polar equation r2 =

a2 sin 2θ or r2 = a2 cos 2θ is called a lemniscate.

x

y

r2 = a2 cos 2θ

x

y

r2 = a2 sin 2θ

Figure 12.5: Lemniscate r2 = a2 cos 2θ or r2 = a2 sin 2θ

12.3 Physical and Geometric Meanings of the Deriva-
tive of Vector-Valued Functions

Let I Ď R be an interval and r : I Ñ R3 be a differentiable vector-valued function.

12.3.1 Physical meaning

Treat I as the time interval, and r(t) as the position of an object at time t. For a, b P I and



a ă b, r(b) ´ r(a)
b ´ a

is the average velocity of the object in the time interval [a, b]. Therefore,

r 1(c) = lim
hÑ0

r(c+ h) ´ r(c)
h

,

is the instantaneous velocity at t = c, and }r 1(c)} is the instantaneous speed at t = c. If r
is twice differentiable, then the derivative of the velocity vector r 1 is the acceleration.
Definition 12.24

Let I Ď R be the time interval and r : I Ñ R3 be the position vector. The velocity
vector, acceleration vector and the speed at time t are

Velocity = v(t) = r 1(t) ,

Acceleration = a(t) = r 11(t) ,

Speed = }v(t)} = }r 1(t)} .

Example 12.25. Suppose a satellite is under uniform circular motion（等速率圓周運動）
and the position of the satellite is given by

r(t) =
(
R cos(ωt), R sin(ωt)

)
,

where R is the distance between the satellite and the center of Earth, and ω is the angular
velocity. Then

r 1(t) = Rω
(

´ sin(ωt), cos(ωt)
)

and r 11(t) = ´Rω2
(

cos(ωt), sin(ωt)
)
;

thus
}a(t)} = }r 11(t)} = Rω2 =

}r 1(t)}2

R
=

}v(t)}2
R

which gives the famous formula for the centripetal acceleration（向心加速度）.

Example 12.26. In this example we consider the motion of a planet around a single sun.
In the plane on which the planet moves, we introduce a polar coordinate system and a
Cartesian coordinate system as follows:

1. Let the sun be the pole of the polar coordinate system, and fixed a polar axis on this
plane.

2. Let i be the unit vector in the direction of the polar axis, and j be the corresponding
unit vector obtained by rotating i counterclockwise by π

2
.



Suppose the position of the planet on the plane at time t P I is given by r(t) = x(t)i+y(t) j.
For each t P I, let (r(t), θ(t)) be the polar representation of (x(t), y(t)) in the trajectory.
We would like to determine the relation that r(t) and θ(t) satisfy.

Define two vectors pr(t) = cos θ(t)i + sin θ(t) j and pθ(t) = ´ sin θ(t)i + cos θ(t) j. Then
r = rpr. Moreover, let M and m be the mass of the sun and the planet, respectively. Then
Newton’s second law of motion implies that

´
GMm

r2
pr = mr 11 . (12.3.1)

By the fact that pr 1 = θ 1
pθ and pθ 1 = ´θ 1

pr, we find that

r 11 =
d

dt

(
r 1
pr + rθ 1

pθ
)
= r 11

pr + r 1θ 1
pθ + r 1θ 1

pθ + rθ 11
pθ ´ r(θ 1)2pr

=
[
r 11 ´ r(θ 1)2

]
pr +

[
2r 1θ 1 + rθ 11

]
pθ .

Therefore, (12.3.1) implies that

´
GM

r2
pr =

[
r 11 ´ r(θ 1)2

]
pr +

[
2r 1θ 1 + rθ 11

]
pθ .

Since pr and pθ are linearly independent, we must have

´
GM

r2
= r 11 ´ r(θ 1)2 , (12.3.2a)

2r 1θ 1 + rθ 11 = 0 . (12.3.2b)

Note that (12.3.2b) implies that (r2θ 1) 1 = 0; thus r2θ 1 is a constant. Since mr2θ 1 is the
angular momentum, (12.3.2b) implies that the angular momentum is a constant, so-called
the conservation of angular momentum（角動量守恆）.

12.3.2 Geometric meaning
Suppose that the image r(I) is a curve C. Since r(c+ h) ´ r(c) is the vector pointing from
r(c) to r(c+ h), we expect that r 1(c), if it is not zero, is tangent to the curve at the point
r(c). This motivates the following
Definition 12.27

Let C be a smooth curve represented by r on an interval I. The unit tangent vector
T (associated with the parametrization r) is defined as

T(t) =
r 1(t)

}r 1(t)}
.



Remark 12.28. Since there are infinitely many parameterizations of a given smooth curve,
different parameterizations of a smooth curve might provide different unit tangent vector.
However, this is not the case and there are only two unit tangent vectors.

Theorem 12.29
Let I Ď R be an interval, and r : I Ñ R3 be a differentiable vector-valued function.
If }r(t)} is a constant function on I, then

r(t) ¨ r 1(t) = 0 @ t P I .

Proof. Suppose that }r(t)} = C for some constant C. Since }r(t)}2 = r(t) ¨ r(t),

r(t) ¨ r(t) = C2 @ t P I ;

thus by the fact that r is differentiable, Theorem 12.8 implies that

r(t) ¨ r 1(t) =
1

2

[
r(t) ¨ r 1(t) + r 1(t) ¨ r(t)

]
=

1

2

d

dt

[
r(t) ¨ r(t)

]
= 0 @ t P I .

Corollary 12.30

Let C be a smooth curve represented by r on an interval I, and T(t) =
r 1(t)

}r 1(t)}
be the

unit tangent vector (associated with the parametrization r). If T is differentiable at
t, then

T(t) ¨ T 1(t) = 0 @ t P I .

Definition 12.31

Let C be a smooth curve represented by r on an interval I, and T(t) =
r 1(t)

}r 1(t)}
be

the unit tangent vector (associated with r). If T 1(t) exists and T 1(t) ‰ 0, then
the principal unit normal vector (associated with the parametrization r) at t is
defined as

N(t) =
T 1(t)

}T 1(t)}
.

Theorem 12.32
Let C be a smooth curve represented by r on an interval I, and the principal unit
normal vector N exists, then the acceleration vector a lies in the plane determined
by the unit tangent vector T and N.



Proof. Let v = r 1 be the velocity vector. Then

v = }v}
v

}v}
= }v}

r 1

}r 1}
= }v}T .

Therefore,
a = v 1 = }v} 1T+ }v}T 1 = }v} 1T+ }v}}T 1}N .

The equation above implies that a is written as a linear combination of T and N, it follows
that a lies in the plane determined by T and N.

Remark 12.33. The coefficients of T and N in the proof above are called the tangential
and normal components of acceleration and are denoted by

aT = }v} 1 and aN = }v}}T 1}

so that a(t) = aT(t)T(t) + aN(t)N(t). Moreover, we note that the formula for aN above
shows that aN ě 0. The normal component of acceleration is also called the centripetal
component of acceleration.

The following theorem provides some convenient formulas for computing aT and aN.
Theorem 12.34

Let C be a smooth curve represented by r on an interval I, and the principal unit
normal vector N exists. Then the tangential and normal components of acceleration
are given by

aT = }v} 1 = a ¨ T =
v ¨ a
}v}

,

aN = }v}}T 1} = a ¨ N =
}v ˆ a}

}v}
=
b

}a}2 ´ a2T .

Proof. It suffices to show the formula aN =
}v ˆ a}

}v}
. Since a = aTT+ aNN, we find that

a ˆ T = aN(N ˆ T) ;

thus using the fact that aN ě 0, by Theorem 10.6 we find that

aN = |aN| =
}a ˆ T}

}N ˆ T}
=

}a ˆ T}

}N}}T} sin π
2

= }a ˆ T} =
}v ˆ a}

}v}
.
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