Calculus MA1002－A Midterm 1

National Central University，Mar．17， 2019
Problem 1．（15\％）Find the volume of the solid whose base is the region between the curve $y=x \sin x$ and the interval $[0, \pi]$ on the x－axis and the cross－sections perpendicular to the x－axis are equilateral triangles（正三角形）with bases running from the x－axis to the curve．

Solution．Using the method of cross section，the volume of the solid given above is

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\sqrt{3}}{4} x^{2} \sin ^{2} x d x & =\frac{\sqrt{3}}{4} \int_{0}^{\pi} x^{2} \cdot \frac{1-\cos (2 x)}{2} d x=\frac{\sqrt{3}}{8} \int_{0}^{\pi}\left[x^{2}-x^{2} \cos (2 x)\right] d x \\
& =\frac{\sqrt{3}}{8}\left[\frac{\pi^{3}}{3}-\int_{0}^{\pi} x^{2} \cos (2 x) d x\right]
\end{aligned}
$$

Integrating by parts，

$$
\begin{aligned}
\int_{0}^{\pi} x^{2} \cos (2 x) d x & =\left.\frac{x^{2} \sin (2 x)}{2}\right|_{x=0} ^{x=\pi}-\int_{0}^{\pi} \frac{\sin (2 x)}{2} \cdot 2 x d x=-\int_{0}^{\pi} x \sin (2 x) d x \\
& =-\left[-\left.\frac{x \cos (2 x)}{2}\right|_{x=0} ^{x=\pi}+\int_{0}^{\pi} \frac{\cos (2 x)}{2} d x\right]=\frac{\pi}{2}
\end{aligned}
$$

Therefore，the volume of the given solid is $\frac{\sqrt{3}}{8}\left(\frac{\pi^{3}}{3}-\frac{\pi}{2}\right)$ ．
Problem 2．（30\％）Find the volume of the solid formed by revolving the shaded region about the y－axis shown in the following figure using at least two different methods．

Solution．Using the shell method，the volume of the given solid is

$$
\int_{0}^{\frac{\pi}{4}} 2 \pi x \cdot \frac{\tan ^{2} x}{x} d x=2 \pi \int_{0}^{\frac{\pi}{4}} \tan ^{2} x d x=2 \pi \int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) d x=\left.2 \pi(\tan x-x)\right|_{x=0} ^{x=\frac{\pi}{4}}=2 \pi\left(1-\frac{\pi}{4}\right)
$$

On the other hand, since the given solid is the complement of a cylinder and a bullet head like solid, the volume of the given solid can be computed by

$$
\pi\left(\frac{\pi}{4}\right)^{2} \cdot \frac{4}{\pi}-V
$$

where V is the volume of the bullet head like solid. Using the disk method,

$$
V=\int_{0}^{\frac{4}{\pi}} \pi\left[f^{-1}(y)\right]^{2} d y
$$

where $f(x)=\frac{\tan ^{2} x}{x}$. Let $y=f(x)$. Then

$$
d y=\frac{2 x \tan x \sec ^{2} x-\tan ^{2} x}{x^{2}} d x=\frac{2 x \tan x \sec ^{2} x-\tan ^{2} x}{x^{2}} d x ;
$$

thus the substitution of variable implies that

$$
\begin{aligned}
V & =\int_{0}^{\frac{\pi}{4}} \pi\left[f^{-1}(f(x))\right]^{2} \frac{2 x \tan x \sec ^{2} x-\tan ^{2} x}{x^{2}} d x=\pi \int_{0}^{\frac{\pi}{4}}\left(2 x \tan x \sec ^{2} x-\tan ^{2} x\right) d x \\
& =\pi\left[\int_{0}^{\frac{\pi}{4}} x d\left(\tan ^{2} x\right)-\int_{0}^{\frac{\pi}{4}} \tan ^{2} x d x\right]=\pi\left[\left.x \tan ^{2} x\right|_{x=0} ^{x=\frac{\pi}{4}}-2 \int_{0}^{\frac{\pi}{4}} \tan ^{2} x d x\right] \\
& =\frac{\pi^{2}}{4}-2 \pi \int_{0}^{\frac{\pi}{4}} \tan ^{2} x d x .
\end{aligned}
$$

Therefore, the volume of the given solid is

$$
\frac{\pi^{2}}{4}-\frac{\pi^{2}}{4}+2 \pi\left(1-\frac{\pi}{4}\right)=2 \pi\left(1-\frac{\pi}{4}\right) .
$$

Problem 3. Let G be the graph of the function $y=\sqrt{x-x^{2}}+\arcsin \sqrt{x}$ on $[0,1]$.

1. (15%) Find the arc-length of G.
2. (15%) Find the area of the surface formed by revolving G about the x-axis.

Solution. First we compute y^{\prime} as follows: by the chain rule we obtain that

$$
y^{\prime}=\frac{1}{2 \sqrt{x-x^{2}}} \cdot \frac{d}{d x}\left(x-x^{2}\right)+\frac{1}{\sqrt{1-\sqrt{x}^{2}}} \cdot \frac{d}{d x} \sqrt{x}=\frac{1-2 x}{2 \sqrt{x-x^{2}}}+\frac{1}{\sqrt{1-x}} \frac{1}{2 \sqrt{x}}=\frac{\sqrt{1-x}}{\sqrt{x}} .
$$

Therefore, the arc length of the graph is given by

$$
\int_{0}^{1} \sqrt{1+y^{\prime 2}} d x=\int_{0}^{1} \sqrt{1+\frac{1-x}{x}} d x=\int_{0}^{1} \frac{1}{\sqrt{x}} d x=\left.2 \sqrt{x}\right|_{x=0} ^{x=1}=2 .
$$

Let S be the surface formed by revolving G about the x-axis. Then the area of S is given by

$$
\begin{aligned}
\int_{0}^{1} 2 \pi & \frac{\sqrt{x-x^{2}}+\arcsin \sqrt{x}}{\sqrt{x}} d x=2 \pi \int_{0}^{1}\left[\sqrt{1-x}+\frac{\arcsin \sqrt{x}}{\sqrt{x}}\right] d x \\
& =2 \pi\left[-\left.\frac{2}{3}(1-x)^{\frac{3}{2}}\right|_{x=0} ^{x=1}+\int_{0}^{1} \frac{\arcsin \sqrt{x}}{\sqrt{x}} d x\right]=\frac{4 \pi}{3}+2 \pi \int_{0}^{1} \frac{\arcsin \sqrt{x}}{\sqrt{x}} d x .
\end{aligned}
$$

Let $\sqrt{x}=\sin u$. Then $x=\sin ^{2} u$ which shows that $d x=2 \sin u \cos u d u$; thus the substitution of variables implies that

$$
\begin{aligned}
\int_{0}^{1} \frac{\arcsin \sqrt{x}}{\sqrt{x}} d x & =\int_{0}^{\frac{\pi}{2}} \frac{u}{\sin u} \cdot 2 \sin u \cos u d u=2 \int_{0}^{\frac{\pi}{2}} u \cos u d u \\
& =2\left[\left.u \sin u\right|_{u=0} ^{u=\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \sin u d u\right]=2\left(\frac{\pi}{2}-1\right)=\pi-2 .
\end{aligned}
$$

Therefore, the area of the surface of revolution is

$$
\frac{4 \pi}{3}+2 \pi(\pi-2)=\frac{4 \pi}{3}+2 \pi^{2}-4 \pi=2 \pi^{2}-\frac{8 \pi}{3}
$$

Problem 4. (25\%) A rectangle \mathscr{R} with sides a and b is divided into two parts \mathscr{R}_{1} and \mathscr{R}_{2} by an arc of a parabola that has its vertex at one corner of \mathscr{R} and passes through the opposite corner. Find the centroids of both \mathscr{R}_{1} and \mathscr{R}_{2}.

Solution. The parabola with vertex at $(0,0)$ and passing through (a, b) is $y=f(x)=\frac{b}{a^{2}} x^{2}$. Then the centroid of \mathscr{R}_{1} is given by

$$
\begin{aligned}
\left(\bar{x}_{1}, \bar{y}_{1}\right) & =\frac{1}{\text { Area of } \mathscr{R}_{1}}\left(\int_{0}^{a} x f(x) d x, \frac{1}{2} \int_{0}^{a} f(x)^{2} d x\right)=\frac{1}{\int_{0}^{a} \frac{b}{a^{2}} x^{2} d x}\left(\int_{0}^{a} \frac{b}{a^{2}} x^{3} d x, \frac{1}{2} \int_{0}^{a} \frac{b^{2}}{a^{4}} x^{4} d x\right) \\
& =\frac{1}{\frac{a b}{3}}\left(\frac{a^{2} b}{4}, \frac{a b^{2}}{10}\right)=\left(\frac{3 a}{4}, \frac{3 b}{10}\right)
\end{aligned}
$$

and the centroid of \mathscr{R}_{2} is given by

$$
\begin{aligned}
\left(\bar{x}_{2}, \bar{y}_{2}\right) & =\frac{1}{\text { Area of } \mathscr{R}_{2}}\left(\int_{0}^{a} x[b-f(x)] d x, \frac{1}{2} \int_{0}^{a}\left[b^{2}-f(x)^{2}\right] d x\right) \\
& =\frac{1}{\int_{0}^{a}\left[b-\frac{b}{a^{2}} x^{2}\right] d x}\left(\int_{0}^{a}\left[b-\frac{b}{a^{2}} x^{2}\right] d x, \frac{1}{2} \int_{0}^{a}\left[b^{2}-\frac{b^{2}}{a^{4}} x^{4}\right] d x\right) \\
& =\frac{1}{\frac{2 a b}{3}}\left(a b-\frac{3 a b}{4}, \frac{1}{2}\left(a b^{2}-\frac{1}{5} a b^{2}\right)\right)=\left(\frac{3 a}{8}, \frac{3 b}{5}\right) .
\end{aligned}
$$

Note that $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ satisfy that

$$
\frac{\text { Area of } \mathscr{R}_{1} \cdot\left(x_{1}, y_{1}\right)+\text { Area of } \mathscr{R}_{1} \cdot\left(x_{1}, y_{1}\right)}{\text { Area of } \mathscr{R}_{1}+\text { Area of } \mathscr{R}_{2}}=\frac{\frac{a b}{3} \cdot\left(\frac{3 a}{4}, \frac{3 b}{10}\right)+\frac{2 a b}{3}\left(\frac{3 a}{8}, \frac{3 b}{5}\right)}{a b}=\left(\frac{a}{2}, \frac{b}{2}\right) .
$$

