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National Central University, Mar. 17, 2019

Problem 1. (15%) Find the volume of the solid whose base is the region between the curve y = x sinx

and the interval [0, π] on the x-axis and the cross-sections perpendicular to the x-axis are equilateral
triangles（正三角形）with bases running from the x-axis to the curve.

Solution. Using the method of cross section, the volume of the solid given above is
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ż π

0

x2 cos(2x) dx =
x2 sin(2x)

2

ˇ

ˇ

ˇ

x=π

x=0
´

ż π

0

sin(2x)
2

¨ 2x dx = ´

ż π

0

x sin(2x) dx

= ´

[
´

x cos(2x)
2

ˇ

ˇ

ˇ

x=π

x=0
+

ż π

0

cos(2x)
2

dx
]
=

π

2
.

Therefore, the volume of the given solid is
?
3

8

(π3

3
´

π

2

)
. ˝

Problem 2. (30%) Find the volume of the solid formed by revolving the shaded region about the
y-axis shown in the following figure using at least two different methods.

Solution. Using the shell method, the volume of the given solid is
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On the other hand, since the given solid is the complement of a cylinder and a bullet head like
solid, the volume of the given solid can be computed by
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where V is the volume of the bullet head like solid. Using the disk method,
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Therefore, the volume of the given solid is
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Problem 3. Let G be the graph of the function y =
?
x ´ x2 + arcsin

?
x on [0, 1].

1. (15%) Find the arc-length of G.

2. (15%) Find the area of the surface formed by revolving G about the x-axis.

Solution. First we compute y 1 as follows: by the chain rule we obtain that
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Therefore, the arc length of the graph is given by
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Let S be the surface formed by revolving G about the x-axis. Then the area of S is given by
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Let
?
x = sinu. Then x = sin2 u which shows that dx = 2 sinu cosu du; thus the substitution of

variables implies that
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Problem 4. (25%) A rectangle R with sides a and b is divided into two parts R1 and R2 by an arc
of a parabola that has its vertex at one corner of R and passes through the opposite corner. Find
the centroids of both R1 and R2.

Solution. The parabola with vertex at (0, 0) and passing through (a, b) is y = f(x) =
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Note that (x1, y1) and (x2, y2) satisfy that
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