Calculus MA1002－B Quiz 10

National Central University，May． 262020

學號：

\qquad姓名： \qquad

Problem 1．（5pts）Use the second partials test to determine the relative extrema and saddle points of the function $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$ ．

Solution．First we look for critical points (x, y) satisfying

$$
f_{x}(x, y)=2 x e^{-x}-\left(x^{2}+y^{2}\right) e^{-x}=0 \quad \text { and } \quad f_{y}(x, y)=2 y e^{-x} .
$$

Therefore，there are only two critical points $(0,0)$ and $(2,0)$ ．Note that

$$
\begin{aligned}
& f_{x x}(x, y)=2 e^{-x}-4 x e^{-x}+\left(x^{2}+y^{2}\right) e^{-x} \\
& f_{x y}(x, y)=-2 y e^{-x}, \quad f_{y y}(x, y)=2 e^{-x}
\end{aligned}
$$

1．At the point $(0,0), f_{x x}(0,0)=2$ and $f_{x x}(0,0) f_{y y}(0,0)-f_{x y}(0,0)^{2}=4>0$ ；thus the second partials test implies that $f(0,0)$ is a relative minimum of f ．

2．At the point $(2,0), f_{x x}(2,0)=-2 e^{-2}$ and $f_{x x}(2,0) f_{y y}(2,0)-f_{x y}(2,0)^{2}=-4 e^{-4}<0$ ；thus the second partials test implies that $(2,0, f(2,0))$ is a saddle point of f ．

Problem 2．（5pts）Find the absolute extrema of the function $f(x, y)=3 x^{2}+2 y^{2}-4 y$ over the region R in the $x y$－plane bounded by the graphs of $y=x^{2}$ and $y=4$ ．

Solution．First we look for local extrema in the interior of the region．In this case，we look for the critical points of f that satisfy

$$
f_{x}(x, y)=6 x=0 \quad \text { and } \quad f_{y}(x, y)=4 y-4=0
$$

Therefore，there is only one critical point $(0,1)$（which is inside R ）of f and $f(0,1)=-2$ ．
Next we look for the extrema on the boundary of R ．On the lower part of the boundary $y=x^{2}$ ，

$$
f(x, y)=f\left(x, x^{2}\right)=3 x^{2}+2 x^{4}-4 x^{2}=2 x^{4}-x^{2}
$$

which，on the interval $[-2,2]$ ，has critical points at $x=0$ and $x= \pm \frac{1}{2}$ ．Therefore，$f\left(x, x^{2}\right)$ attains its maximum at $x= \pm 2$（with value $f(\pm 2,4)=28$ ）and attains its minimum at $x= \pm \frac{1}{2}$（with value $\left.f\left(\pm \frac{1}{2}, \frac{1}{4}\right)=-\frac{1}{8}\right)$ ．On the upper part of the boundary $y=4$ ，

$$
f(x, y)=f(x, 4)=3 x^{2}+16
$$

which，on the interval $[-2,2]$ ，attains its maximum at $x= \pm 2$（with value $f(\pm 2,4)=28$ ）and attains its minimum at $x=0$（with value $f(0,0)=0$ ）．

Comparing the values computed above，we find that the absolute maximum of f over R occurs at $(\pm 2,4)$ with value $f(\pm 2,4)=28$ and the absolute minimum of f over R occurs at $(0,1)$ with value $f(0,1)=-2$ ．

