Calculus MA1002－B Quiz 03

National Central University，Mar． 312020

學號：

\qquad姓名： \qquad

Problem 1．（3pts）State Taylor theorem（for functions of one variable）．
Solution．Let $f:(a, b) \rightarrow \mathbb{R}$ be $(n+1)$－times differentiable，and $c \in(a, b)$ ．Then for each $x \in(a, b)$ ， there exists ξ between x and c such that

$$
\begin{equation*}
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x), \tag{0.1}
\end{equation*}
$$

where Lagrange form of the remainder $R_{n}(x)$ is given by

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}
$$

Problem 2．（4pts）Find the third Taylor polynomial for the function $f(x)=(\arctan x)^{2}$ about 0 ．
Solution．First we compute $f^{\prime}(0), f^{\prime \prime}(0)$ and $f^{\prime \prime \prime}(0)$ ．By the chain rule，

$$
f^{\prime}(x)=2(\arctan x) \frac{1}{1+x^{2}}=\frac{2 \arctan x}{1+x^{2}} .
$$

Then the quotient rule implies that

$$
f^{\prime \prime}(x)=\frac{\frac{2}{1+x^{2}}\left(1+x^{2}\right)-4 x \arctan x}{\left(1+x^{2}\right)^{2}}=\frac{2-4 x \arctan x}{\left(1+x^{2}\right)^{2}} ;
$$

thus

$$
f^{\prime \prime \prime}(x)=\frac{-4\left(\arctan x+\frac{x}{1+x^{2}}\right)\left(1+x^{2}\right)^{2}-(2-4 x \arctan x) \cdot 2\left(1+x^{2}\right) \cdot 2 x}{\left(1+x^{2}\right)^{4}}
$$

Therefore，$f(0)=0, f^{\prime}(0)=0, f^{\prime \prime}(0)=2$ and $f^{(3)}(0)=0$ ；thus the third Taylor polynomial for f about 0 is

$$
P_{3}(x)=0+0 \cdot(x-0)+\frac{2}{2!}(x-0)^{2}+\frac{0}{3!}(x-0)^{3}=x^{2} .
$$

Problem 3．（3pts）Let $f:(a, b) \rightarrow \mathbb{R}$ be a twice differentiable function such that $\left|f^{\prime}(x)\right| \geqslant K$ and $\left|f^{\prime \prime}(x)\right| \leqslant M$ for all $x \in(a, b)$ ，where K, M are positive real numbers．Show that if $f(r)=0$ and $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ for all $n \geqslant 1$ ，then

$$
\left|x_{n+1}-r\right| \leqslant \frac{M}{2 K}\left|x_{n}-r\right|^{2} \quad \forall n \geqslant 1 .
$$

Proof．By Taylor＇s theorem，$f(x)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)+\frac{f^{\prime \prime}(\xi)}{2}\left(x-x_{n}\right)$ for some ξ between x and x_{n} ．Then

$$
0=f\left(x_{n}\right)+f\left(x_{n}\right)\left(r-x_{n}\right)+\frac{f^{\prime \prime}(\xi)}{2}\left(r-x_{n}\right)^{2}
$$

thus if $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ ，

$$
\left|x_{n+1}-r\right|=\left|x_{n}-r-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right|=\left|\frac{f^{\prime}\left(x_{n}\right)\left(x_{n}-r\right)-f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right|=\left|\frac{f^{\prime \prime}(\xi)\left(r-x_{n}\right)^{2}}{2 f^{\prime}\left(x_{n}\right)}\right| \leqslant \frac{M}{2 K}\left|x_{n}-r\right|^{2}
$$

