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Problem 1. Use the method of Lagrange multipliers to complete the following.

(1) Maximize f(x, y) =
a

6 ´ x2 ´ y2 subject to the constraint x+ y ´ 2 = 0.

(2) Minimize f(x, y) = 3x2 ´ y2 subject to the constraint 2x ´ 2y + 5 = 0.

(3) Minimize f(x, y) = x2 + y2 subject to the constraint xy2 = 54.

(4) Maximize f(x, y, z) = exyz subject to the constraint 2x2 + y2 + z2 = 24.

(5) Maximize f(x, y, z) = ln(x2+1)+ln(y2+1)+ln(z2+1) subject to the constraint x2+y2+z2 = 12.

(6) Maximize f(x, y, z) = x+ y + z subject to the constraint x2 + y2 + z2 = 1.

(7) Maximize f(x, y, z, t) = x+ y + z + t subject to the constraint x2 + y2 + z2 + t2 = 1.

(8) Minimize f(x, y, z) = x2 + y2 + z2 subject to the constraints x+ 2z = 6 and x+ y = 12.

(9) Maximize f(x, y, z) = z subject to the constraints x2 + y2 + z2 = 36 and 2x+ y ´ z = 2.

(10) Maximize f(x, y, z) = yz + xy subject to the constraint xy = 1 and y2 + z2 = 1.

Problem 2. Use the method of Lagrange multipliers to find the extreme values of the function
f(x1, x2, ¨ ¨ ¨ , xn) = x1 + x2 + ¨ ¨ ¨ + xn subject to the constraint x2

1 + x2
2 + ¨ ¨ ¨ + x2

n = 1.

Problem 3. (1) Use the method of Lagrange multipliers to show that the product of three positive
numbers x, y, and z, whose sum has the constant value S, is a maximum when the three
numbers are equal. Use this result to show that

x+ y + z

3
ě 3

?
xyz @x, y, z ą 0 .

(2) Generalize the result of part (1) to prove that the product x1x2x3 ¨ ¨ ¨ xn is maximized, under
the constraint that

n
ř

i=1

xi = S and xi ě 0 for all 1 ď i ď n, when

x1 = x2 = x3 = ¨ ¨ ¨ = xn .

Then prove that

n
?
x1x2 ¨ ¨ ¨ xn ď

x1 + x2 + ¨ ¨ ¨ + xn
n

@x1, x2, ¨ ¨ ¨ , xn ě 0 .

Problem 4. (1) Maximize
n
ř

i=1

xiyi subject to the constraints
n
ř

i=1

x2
i = 1 and

n
ř

i=1

y2i = 1.



(2) Put xi =
ai

d

n
ř

j=1
a2j

and yi =
bi

d

n
ř

j=1
b2j

to show that

n
ÿ

i=1

aibi ď

g

f

f

e

n
ÿ

j=1

a2j

g

f

f

e

n
ÿ

j=1

b2j

for any numbers a1, a2, ¨ ¨ ¨ , an, b1, b2, ¨ ¨ ¨ , bn. This inequality is known as the Cauchy-Schwarz
Inequality.

Problem 5. Find the points on the curve x2 + xy + y2 = 1 in the xy-plane that are nearest to and
farthest from the origin.

Problem 6. If the ellipse x2

a2
+

y2

b2
= 1 is to enclose the circle x2 + y2 = 2y, what values of a and b

minimize the area of the ellipse?

Problem 7. (1) Use the method of Lagrange multipliers to prove that the rectangle with maximum
area that has a given perimeter p is a square.

(2) Use the method of Lagrange multipliers to prove that the triangle with maximum area that
has a given perimeter p is equilateral.

Hint: Use Heron’s formula for the area:

A =
a

s(s ´ x)(s ´ y)(s ´ z) ,

where s =
p

2
and x, y, z are the lengths of the sides.

Problem 8. When light waves traveling in a transparent medium strike the surface of a second
transparent medium, they tend to “bend” in order to follow the path of minimum time. This
tendency is called refraction and is described by Snell＇s Law of Refraction,

sin θ1
v1

=
sin θ2

v2

,

where θ1 and θ2 are the magnitudes of the angles shown in the figure, and v1 and v2 are the velocities
of light in the two media. Use the method of Lagrange multipliers to derive this law using x+ y = a.



Problem 9. A set C Ď Rn is said to be convex if

tx + (1 ´ t)y P C @ x,y P C and t P [0, 1] .

（一個 Rn 中的集合 C 被稱為凸集合如果 C 中任兩點 x 與 y 之連線所形成的線段也在 C 中)。
Suppose that C Ď Rn is a convex set, and f : C Ñ R be a differentiable real-valued function.

Show that if f on C attains its minimum at a point x˚, then

(∇f)(x˚) ¨ (x ´ x˚) ě 0 @ x P C . (‹)

Hint: Recall that (∇f)(x˚) ¨ (x ´ x˚), when f is differentiable at x˚, is the directional derivative of
f at x˚ in the “direction” (x ´ x˚).
Remark: A point x˚ satisfying (‹) is sometimes called a stationary point of f in C.

Problem 10. Let B be the unit closed ball centered at the origin given by

B =
␣

x = (x1, x2, ¨ ¨ ¨ , xn) P Rn
ˇ

ˇ }x}2 = x2
1 + x2

2 + ¨ ¨ ¨ + x2
n ď 1

(

,

and f : B Ñ R be a differentiable real-valued function. Consider the minimization problem min
xPB

f(x).

(1) Show that if f attains its minimum at x˚ P B, then there exists λ ď 0 such that

(∇f)(x˚) = λx˚ .

(2) Find the minimum of the function f(x, y) = x2 + 2y2 ´ x on the unit closed disk centered at
the origin

␣

(x, y)
ˇ

ˇx2 + y2 ď 1
(

using (1).

Problem 11. Let a P R3 be a vector, b P R, and C be a half plane given by

C =
␣

x = (x1, x2, x3) P R3
ˇ

ˇa ¨ x ď b
(

,

and f : C Ñ R be a differentiable real-valued function. Consider the minimization problem min
xPC

f(x).
Show that if f attains its minimum at x˚ P C, then there exists λ ď 0 such that

(∇f)(x˚) = λa .


