Exercise Problem Sets 7 （部份解答）

Apr．30． 2020

Problem 6．Let C_{1} be the polar graph of the polar function $r=1+\cos \theta$（which is a cardioid），and C_{2} be the polar graph of the polar function $r=3 \cos \theta$（which is a circle）．See the following figure for reference．

Figure 1：The polar graphs of the polar equations $r=1+\cos \theta$ and $r=3 \cos \theta$
（1）Find the intersection points of C_{1} and C_{2} ．
（2）Find the line L passing through the lowest intersection point and tangent to the curve C_{2} ．
（3）Identify the curve marked by \star on the θr－plane for $0 \leqslant \theta \leqslant 2 \pi$ ．
（4）Find the area of the shaded region．
Solution．（1）Let $1+\cos \theta=3 \cos \theta$ ．Then $2 \cos \theta=1$ or $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$ ．From the figure，it is also clear that C_{1} and C_{2} intersection at the origin．Therefore，the points of intersections are

$$
\left(\frac{3}{4}, \frac{3 \sqrt{3}}{4}\right), \quad\left(\frac{3}{4},-\frac{3 \sqrt{3}}{4}\right), \quad(0,0) .
$$

（2）C_{2} can be parametrized by $\left\{(x, y) \in \mathbb{R}^{2} \mid x=3 \cos ^{2} \theta, y=3 \cos \theta \sin \theta\right\}$ ．Therefore，

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-3 \sin ^{2} \theta+3 \cos ^{2} \theta}{-6 \cos \theta \sin \theta}=\frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \cos \theta \sin \theta} ;
$$

thus at the lowest point of intersection $\left(\theta=\frac{5 \pi}{3}\right), \frac{d y}{d x}=-\frac{1}{\sqrt{3}}$ ．As a consequence，the desired tangent line is

$$
y=-\frac{1}{\sqrt{3}}\left(x-\frac{3}{4}\right)-\frac{3 \sqrt{3}}{4}=-\frac{x}{\sqrt{3}}-\frac{\sqrt{3}}{2} .
$$

（3）The curve marked by \star is in the fourth quadrant，on the circle $r=3 \cos \theta$ with end－points（ 0,0 ） and $\left(\frac{3}{4},-\frac{3 \sqrt{3}}{4}\right)$ ．Therefore，it corresponds to the curves marked by \star shown in the following figure．

（4）The shaded region on $x y$－plane corresponds to the shaded region in Figure 2．Therefore，the area of the shaded region（on $x y$－plane）is

$$
\begin{gathered}
\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left[(1+\cos \theta)^{2}-9 \cos ^{2} \theta\right] d \theta=\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}[1+2 \cos \theta-4(1+\cos 2 \theta)] d \theta \\
=\left.\frac{-3 \theta+2 \sin \theta-2 \sin 2 \theta}{2}\right|_{\theta=\frac{\pi}{3}} ^{\theta=\frac{\pi}{2}}=1-\frac{\pi}{4}
\end{gathered}
$$

以下問題部份小題要用到第七章的觀念，為了題目的完整性一併呈現，但是與第十二章有關的是 （1）（2）（3）三小題

Problem 7．Let R be the region bounded by the circle $r=1$ and outside the lemniscate $r^{2}=$ $-2 \cos 2 \theta$ ，and is located on the right half plane（see the shaded region in the graph）．

Figure 2：The polar graphs of the polar equations $r=1$ and $r^{2}=-2 \cos 2 \theta$
（1）Find the points of intersection of the circle $r=1$ and the lemniscate $r^{2}=-2 \cos 2 \theta$ ．
（2）Show that the straight line $x=\frac{1}{2}$ is tangent to the lemniscate at the points of intersection on the right half plane．
（3）Find the area of R ．
(4) Find the volume of the solid of revolution obtained by rotating R about the x-axis by complete the following:
(a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

$$
\begin{equation*}
y^{4}+a(x) y^{2}+b(x)=0 \tag{0.1}
\end{equation*}
$$

for some functions $a(x)$ and $b(x)$. Find $a(x)$ and $b(x)$.
(b) Solving (0.1), we find that $y^{2}=c(x)$, where $c(x)=c_{1} x^{2}+c_{2}+c_{3} \sqrt{1-4 x^{2}}$ for some constants c_{1}, c_{2} and c_{3}. Then the volume of interests can be computed by

$$
I=\pi \int_{0}^{\frac{1}{2}} c(x) d x+\pi \int_{\frac{1}{2}}^{1} d(x) d x
$$

Compute $\int_{\frac{1}{2}}^{1}\left[d(x)-\left(1-x^{2}\right)\right] d x$.
(c) Evaluate I by first computing the integral $\int_{0}^{\frac{1}{2}} \sqrt{1-4 x^{2}} d x$, and then find I.
(5) Find the area of the surface of revolution obtained by rotating the boundary of R about the x-axis.

Solution. (1) Let $2 \cos 2 \theta=-1$, then $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$; thus the points of intersection are

$$
\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right),\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) .
$$

(2) On the lemniscate, $r= \pm \sqrt{-2 \cos 2 \theta}$; thus

$$
\left.\frac{d x}{d \theta}\right|_{\theta=\frac{\pi}{3}}=\left.\left[r^{\prime}(\theta) \cos \theta-r(\theta) \sin \theta\right]\right|_{\theta=\frac{\pi}{3}}=\left.\sqrt{2}\left[\frac{\sin 2 \theta}{\sqrt{-\cos 2 \theta}} \cos \theta-\sqrt{-\cos 2 \theta} \sin \theta\right]\right|_{\theta=\frac{\pi}{3}}=0
$$

Similar computation shows that $\left.\frac{d x}{d \theta}\right|_{\theta=\frac{2 \pi}{3}}=0$; thus $x=\frac{1}{2}$ is tangent to the lemniscate.
(3) The area of the shaded region is

$$
2 \times \frac{1}{2}\left[\int_{0}^{\frac{\pi}{4}} 1^{2} d \theta+\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}(1+2 \cos 2 \theta) d \theta\right]=\frac{\pi}{4}+\left.(\theta+\sin 2 \theta)\right|_{\theta=\frac{\pi}{4}} ^{\theta=\frac{\pi}{3}}=\frac{\pi}{3}+\frac{\sqrt{3}}{2}-1 .
$$

(4) If (x, y) is on the lemniscate, then

$$
x^{2}+y^{2}=-2\left(2 \frac{x^{2}}{x^{2}+y^{2}}-1\right)=\frac{2\left(y^{2}-x^{2}\right)}{x^{2}+y^{2}}
$$

which implies that

$$
y^{4}+2\left(x^{2}-1\right) y^{2}+x^{4}+2 x^{2}=0
$$

Therefore,

$$
y^{2}=-\left(x^{2}-1\right)+\sqrt{\left(x^{2}-1\right)^{2}-\left(x^{4}+2 x^{2}\right)}=1-x^{2}+\sqrt{1-4 x^{2}} .
$$

Therefore, the volume of the solid of revolution obtained by rotating R about the y-axis is

$$
\begin{aligned}
\pi \int_{0}^{\frac{1}{2}}[1 & \left.-x^{2}+\sqrt{1-4 x^{2}}\right] d x+\pi \int_{\frac{1}{2}}^{1}\left(1-x^{2}\right) d x \\
& =\pi \int_{0}^{\frac{1}{2}} \sqrt{1-4 x^{2}} d x+\pi \int_{0}^{1}\left(1-x^{2}\right) d x \\
& =\pi \int_{0}^{\frac{1}{2}} \sqrt{1-4 x^{2}} d x+\left.\pi\left(x-\frac{x^{3}}{3}\right)\right|_{x=0} ^{x=1}=\pi \int_{0}^{\frac{1}{2}} \sqrt{1-4 x^{2}} d x+\frac{2 \pi}{3}
\end{aligned}
$$

On the other hand, the integral can be evaluated by making a change of variable $x=\frac{\sin \theta}{2}$:

$$
\begin{aligned}
\int \sqrt{1-4 x^{2}} d x & =\frac{1}{2} \int \cos ^{2} \theta d \theta=\frac{1}{4} \int(1+\cos 2 \theta) d \theta \\
& =\frac{1}{4} \theta+\frac{1}{8} \sin 2 \theta+C=\frac{1}{4}(\theta+\sin \theta \cos \theta)+C \\
& =\frac{1}{4}\left(\sin ^{-1} 2 x+2 x \sqrt{1-4 x^{2}}\right)+C
\end{aligned}
$$

Therefore,

$$
\int_{0}^{\frac{1}{2}} \sqrt{1-4 x^{2}} d x=\frac{\pi}{8}
$$

and the volume of the solid of revolution obtained by rotating R about the x-axis is $\frac{2 \pi}{3}+\frac{\pi^{2}}{8}$.
(5) There are two parts of the surface: one from rotating the lemniscate and the other from rotating the sphere. The area obtained by rotating the part of the lemniscate is

$$
\begin{aligned}
\int 2 \pi|y| d s & =\int 2 \pi|r \sin \theta| \sqrt{r^{\prime 2}+r^{2}} d \theta \\
& =2 \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sqrt{-2 \cos 2 \theta} \sin \theta \sqrt{\left(\sqrt{-2 \cos 2 \theta^{\prime}}\right)^{2}+(-\sqrt{2 \cos 2 \theta})^{2}} d \theta \\
& =4 \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sqrt{-\cos 2 \theta} \sin \theta \frac{1}{\sqrt{-\cos 2 \theta}} d \theta \\
& =\left.4 \pi(-\cos \theta)\right|_{\theta=\frac{\pi}{4}} ^{\theta=\frac{\pi}{3}}=2 \pi(\sqrt{2}-1) .
\end{aligned}
$$

The part obtained by rotating the part of the sphere is

$$
\int 2 \pi|y| d s=2 \pi \int_{0}^{\frac{\pi}{3}} \sin \theta \sqrt{1^{\prime 2}+1^{2}} d \theta=\left.2 \pi(-\cos \theta)\right|_{\theta=0} ^{\theta=\frac{\pi}{3}}=\pi .
$$

The total area is then $(2 \sqrt{2}-1) \pi$.
Problem 8. Let R be the region bounded by the lemniscate $r^{2}=2 \cos 2 \theta$ and is outside the circle $r=1$ (see the shaded region in the graph).

Figure 3: The polar graphs of the polar equations $r^{2}=2 \cos 2 \theta$ and $r=1$
(1) Find the area of R.
(2) Find the slope of the tangent line passing thought the point on the lemniscate corresponding to $\theta=\frac{\pi}{6}$.
(3) Find the volume of the solid of revolution obtained by rotating R about the x-axis by complete the following:
(a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

$$
\begin{equation*}
y^{4}+a(x) y^{2}+b(x)=0 \tag{0.2}
\end{equation*}
$$

for some functions $a(x)$ and $b(x)$. Find $a(x)$ and $b(x)$.
(b) Solving (0.2), we find that $y^{2}=c(x)$, where $c(x)=c_{1} x^{2}+c_{2}+c_{3} \sqrt{1+4 x^{2}}$ for some constants c_{1}, c_{2} and c_{3}. Then the volume of interests can be computed by

$$
I=2 \times\left[\pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} c(x) d x-\pi \int_{\frac{\sqrt{3}}{2}}^{1} d(x) d x\right] .
$$

Compute $\int_{\frac{\sqrt{3}}{2}}^{1}\left[d(x)-\left(1-x^{2}\right)\right] d x$.
(c) Evaluate I by first computing the integral $\int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4 x^{2}} d x$, and then find I.
(4) Find the surface area of the surface of revolution obtained by rotating the boundary of R about the x-axis.

Solution. (1) First we find the points of intersection: let $2 \cos 2 \theta=1$, then $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$; thus the points of intersection are

$$
\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right),\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right),\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)
$$

The area of the desired region is

$$
4 \int_{0}^{\frac{\pi}{6}}(2 \cos 2 \theta-1) d \theta=\left.4(\sin 2 \theta-\theta)\right|_{\theta=0} ^{\theta=\frac{\pi}{6}}=4\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)=2 \sqrt{3}-\frac{2 \pi}{3}
$$

(3) If (x, y) is on the lemniscate, then

$$
x^{2}+y^{2}=2\left(2 \frac{x^{2}}{x^{2}+y^{2}}-1\right)=\frac{2\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}
$$

which implies that

$$
y^{4}+2\left(x^{2}+1\right) y^{2}+x^{4}-2 x^{2}=0
$$

Therefore,

$$
y^{2}=-\left(x^{2}+1\right)+\sqrt{\left(x^{2}+1\right)^{2}-\left(x^{4}-2 x^{2}\right)}=-\left(x^{2}+1\right)+\sqrt{1+4 x^{2}} .
$$

Therefore, the volume of the solid of revolution obtained by rotating R about the x-axis is

$$
\begin{aligned}
& 2 \pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}}\left[-\left(x^{2}+1\right)+\sqrt{1+4 x^{2}}\right] d x-2 \pi \int_{\frac{\sqrt{3}}{2}}^{1}\left(1-x^{2}\right) d x \\
& \quad=2 \pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4 x^{2}} d x-\left.2 \pi\left(\frac{x^{3}}{3}+x\right)\right|_{x=\frac{\sqrt{3}}{2}} ^{x=\sqrt{2}}-\left.2 \pi\left(x-\frac{x^{3}}{3}\right)\right|_{x=\frac{\sqrt{3}}{2}} ^{x=1} \\
& \quad=2 \pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4 x^{2}} d x+2 \pi\left(\frac{\sqrt{3}}{8}+\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{8}-\frac{2 \sqrt{2}}{3}-\sqrt{2}-1+\frac{1}{3}\right) \\
& \quad=2 \pi \int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4 x^{2}} d x+2 \pi\left(\sqrt{3}-\frac{5 \sqrt{2}}{3}-\frac{2}{3}\right) .
\end{aligned}
$$

On the other hand, the integral can be evaluated by making a change of variable $x=\frac{\tan \theta}{2}$:

$$
\begin{aligned}
\int \sqrt{1+4 x^{2}} d x & =\frac{1}{2} \int \sec ^{3} \theta d \theta=\frac{1}{2} \int \sec \theta\left(\tan ^{2} \theta+1\right) d \theta \\
& =\frac{1}{2} \int \tan \theta d \sec \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta| \\
& =\frac{1}{2}\left[\tan \theta \sec \theta-\int \sec ^{3} \theta d \theta\right]+\frac{1}{2} \ln |\sec \theta+\tan \theta| \\
& =-\frac{1}{2} \int \sec ^{3} \theta d \theta+\frac{1}{2}[\tan \theta \sec \theta+\ln |\sec \theta+\tan \theta|] \\
& =\frac{1}{4}[\tan \theta \sec \theta+\ln |\sec \theta+\tan \theta|]+C \\
& =\frac{1}{4}\left[2 x \sqrt{1+4 x^{2}}+\ln \left|2 x+\sqrt{1+4 x^{2}}\right|\right]+C
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{\frac{\sqrt{3}}{2}}^{\sqrt{2}} \sqrt{1+4 x^{2}} d x & =\frac{1}{4}[6 \sqrt{2}+\ln (3+2 \sqrt{2})-2 \sqrt{3}-\ln (2+\sqrt{3})] \\
& =\pi\left(\frac{3 \sqrt{2}}{2}-\frac{\sqrt{3}}{2}+\frac{1}{4} \ln \frac{3+2 \sqrt{2}}{2+\sqrt{3}}\right)
\end{aligned}
$$

and the volume of the solid of revolution obtained by rotating R about the x-axis is

$$
\pi\left(\frac{1}{2} \ln \frac{3+2 \sqrt{2}}{2+\sqrt{3}}+\sqrt{3}-\frac{\sqrt{2}}{3}-\frac{4}{3}\right) .
$$

(4) There are two parts of the surface: one from rotating the lemniscate and the other from rotating the sphere. The area obtained by rotating the part of the lemniscate is

$$
\begin{aligned}
\int 2 \pi y d s & =\int 2 \pi r \sin \theta \sqrt{r^{\prime 2}+r^{2}} d \theta \\
& =2 \pi \int_{0}^{\frac{\pi}{6}} \sqrt{2 \cos 2 \theta} \sin \theta \sqrt{\left({\left.\sqrt{2 \cos 2 \theta^{\prime}}\right)^{2}+(\sqrt{2 \cos 2 \theta})^{2}}^{2} d \theta\right.} \\
& =4 \pi \int_{0}^{\frac{\pi}{6}} \sqrt{\cos 2 \theta} \sin \theta \frac{1}{\sqrt{\cos 2 \theta}} d \theta \\
& =\left.4 \pi(-\cos \theta)\right|_{\theta=0} ^{\theta=\frac{\pi}{6}}=4 \pi\left(1-\frac{\sqrt{3}}{2}\right) .
\end{aligned}
$$

The part obtained by rotating the part of the sphere is

$$
\int 2 \pi y d s=2 \pi \int_{0}^{\frac{\pi}{6}} \sin \theta \sqrt{1^{\prime 2}+1^{2}} d \theta=2 \pi\left(1-\frac{\sqrt{3}}{2}\right)
$$

The total area is then $12 \pi\left(1-\frac{\sqrt{3}}{2}\right)$.
Problem 9. Let C_{1}, C_{2} be the curves given by polar coordinate $r=1-2 \sin \theta$ and $r=4+4 \sin \theta$, respectively, and the graphs of C_{1} and C_{2} are given in Figure 4 .

Figure 4: The polar graphs of the polar equations $r=1-2 \sin \theta$ and $r=4+4 \sin \theta$
(1) Let P_{1}, \cdots, P_{4} be four points of intersection of curves C_{1} and C_{2} as shown in Figure (the fifth one is the origin). What are the Cartesian coordinates of P_{1} and P_{2} ?
(2) Let L_{1} and L_{2} be two straight lines passing P_{1} and tangent to C_{1}, C_{2}, respectively. Find the cosine value of the acute/smaller angle between L_{1} and L_{2}.
(3) Compute the area of the shaded region.

Solution. Some of the important correspondence between curves and points in (x, y)-plane and (r, θ)plane are shown in the following figures.

Figure 5: The polar graphs of the polar equations $r=1-2 \sin \theta$ and $r=4+4 \sin \theta$

Figure 6: The graph of $r=1-2 \sin \theta$ and $r=4+4 \sin \theta$ on the θr-plane
(1) The point P_{1} is obtained by solving $1-2 \sin \theta=4+4 \sin \theta$ which gives us $\sin \theta=-0.5$. Therefore, $\theta=-\frac{\pi}{6}$ or $\theta=\frac{11 \pi}{6}$. The Cartesian coordinate of P_{1} is then

$$
\left(\left(1-2 \sin \frac{-\pi}{6}\right) \cos \frac{-\pi}{6},\left(1-2 \sin \frac{-\pi}{6}\right) \sin \frac{-\pi}{6}\right)=(\sqrt{3},-1) .
$$

It is a bit tricky to find P_{2}. As one can see in Figure 6, the thick green curve does not intersect the thick blue curve in the (r, θ)-plane, while these two curves still intersect in (x, y)-plane. The reason for this phenomena is due to the non-unique representation of curves in polar coordinates. In fact, $r=f(\theta)$ and $r=-f(\theta+\pi)$ will present the same curve. We rewrite $r(\theta)=1-2 \sin \theta$ as $r(\theta)=-(1-2 \sin (\theta+\pi))=-1-2 \sin \theta$. Then the point P_{2} is obtained by solving $-1-2 \sin \theta=4+4 \sin \theta$ which gives $\sin \theta=-\frac{5}{6}$ (hence $\cos \theta= \pm \frac{\sqrt{11}}{6}$). Therefore, the Cartesian coordinate of P_{2} is

$$
\left(\left(1-2 \cdot \frac{-5}{6}\right) \frac{\sqrt{11}}{6},\left(1-2 \cdot \frac{-5}{6}\right) \frac{-5}{6}\right)=\left(\frac{4 \sqrt{11}}{9},-\frac{20}{9}\right) .
$$

(2) Let the green line denote $\theta=\frac{-\pi}{6}$ or $\theta=\frac{11 \pi}{6}$. Then the green line divides the shaded region into two pieces, and each piece corresponds to one of two shaded regions in the (r, θ)-plane.

Therefore, the area of the shaded region is

$$
\begin{aligned}
& \frac{1}{2} \int_{-\frac{\pi}{6}}^{0}(1-2 \sin \theta)^{2} d \theta+\frac{1}{2} \int_{\frac{3 \pi}{2}}^{\frac{11 \pi}{6}}(4+4 \sin \theta)^{2} d \theta \\
& \quad=\frac{1}{2} \int_{-\frac{\pi}{6}}^{0}\left(1-4 \sin \theta+4 \sin ^{2} \theta\right) d \theta+8 \int_{\frac{3 \pi}{2}}^{\frac{11 \pi}{6}}\left(1+2 \sin \theta+\sin ^{2} \theta\right) d \theta
\end{aligned}
$$

Using the formula $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$ and $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$, we know that the area of interest is

$$
\begin{aligned}
& \frac{1}{2} \int_{-\frac{\pi}{6}}^{0}(3-4 \sin \theta-2 \cos 2 \theta) d \theta+4 \int_{\frac{3 \pi}{2}}^{\frac{11 \pi}{6}}(3+4 \sin \theta-\cos 2 \theta) d \theta \\
& \quad=\left.\frac{3 \theta+4 \cos \theta-\sin 2 \theta}{2}\right|_{\theta=-\frac{\pi}{6}} ^{\theta=0}+\left.4\left(3 \theta-4 \cos \theta-\frac{\sin 2 \theta}{2}\right)\right|_{\theta=\frac{3 \pi}{2}} ^{\theta=\frac{11 \pi}{6}} \\
& \quad=\left(\frac{\pi}{4}+2-\frac{5 \sqrt{3}}{4}\right)+(4 \pi-7 \sqrt{3})=\frac{17 \pi}{4}+2-\frac{33 \sqrt{3}}{4}
\end{aligned}
$$

(3) Let

$$
\begin{aligned}
& \left(x_{1}(\theta), y_{1}(\theta)\right)=((1-2 \sin \theta) \cos \theta,(1-2 \sin \theta) \sin \theta), \\
& \left(x_{2}(\theta), y_{2}(\theta)\right)=((4+4 \sin \theta) \cos \theta,(4+4 \sin \theta) \sin \theta) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(x_{1}^{\prime}(\theta), y_{1}^{\prime}(\theta)\right) & =\left(-2 \cos ^{2} \theta-(1-2 \sin \theta) \sin \theta,-2 \sin \theta \cos \theta+(1-2 \sin \theta) \cos \theta\right) \\
& =(-2 \cos 2 \theta-\sin \theta,-2 \sin 2 \theta+\cos \theta) \\
\left(x_{2}^{\prime}(\theta), y_{2}^{\prime}(\theta)\right) & =\left(4 \cos ^{2} \theta-(4+4 \sin \theta) \sin \theta, 4 \sin \theta \cos \theta+(4+4 \sin \theta) \cos \theta\right) \\
& =(4 \cos 2 \theta-4 \sin \theta, 4 \sin 2 \theta+4 \cos \theta) ;
\end{aligned}
$$

hence the "direction" of C_{1} and C_{2} are given by

$$
\left(x_{1}^{\prime}\left(-\frac{\pi}{6}\right), y_{1}^{\prime}\left(-\frac{\pi}{6}\right)\right)=\left(-\frac{1}{2}, \frac{3 \sqrt{3}}{2}\right), \quad\left(x_{2}^{\prime}\left(-\frac{\pi}{6}\right), y_{2}^{\prime}\left(-\frac{\pi}{6}\right)\right)=(4,0)
$$

Therefore, if the smaller angle between L_{1} and L_{2} is φ, then

$$
\cos \varphi=\frac{\left|(4,0) \cdot\left(-\frac{1}{2}, \frac{3 \sqrt{3}}{2}\right)\right|}{\|(4,0)\|\left\|\left(-\frac{1}{2}, \frac{3 \sqrt{3}}{2}\right)\right\|}=\frac{2}{4 \sqrt{7}}=\frac{\sqrt{7}}{14} .
$$

