Exercise Problem Sets 5

Problem 1. Let $f: (-r, r) \to \mathbb{R}$ be *n*-times differentiable at 0, and $P_n(x)$ be the *n*-th Maclaurin polynomial for f.

- 1. Show that if $g(x) = x^{\ell} f(x^m)$ for some positive integers m and ℓ , then the $(mn+\ell)$ -th Maclaurin polynomial for g is $x^{\ell} P_n(x^m)$.
- 2. Show that if $h(x) = x^{\ell} f(-x^m)$ for some positive integers m and ℓ , then the $(mn + \ell)$ -th Maclaurin polynomial for h is $x^{\ell} P_n(-x^m)$.
- 3. Find the Maclaurin series for the following functions:

(1)
$$y = \frac{1}{1+x^2}$$
 (2) $y = x^2 \arctan(x^3)$ (3) $y = \ln(1+x^4)$ (4) $y = x \sin(x^3) \cos(x^3)$.

Hint for (1) and (2): See Exercise 3 Problem 4.

Problem 2. To find the sum of the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$, express $\frac{1}{1-x}$ as a geometric series, differentiate both sides of the resulting equation with respect to x, multiply both sides of the result by x, differentiate again, multiply by x again, and set x equal to $\frac{1}{2}$. What do you get?

Problem 3. Complete the following.

(1) Use the power series of $y = \arctan x$ to show that

$$\pi = 2\sqrt{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^n}$$

(2) Using $x^3 + 1 = (x+1)(x^2 - x + 1)$, rewrite the integral $\int_0^{\frac{1}{2}} \frac{dx}{x^2 - x + 1}$ and then express $\frac{1}{1+x^3}$ as the sum of a power series to prove the following formula for π :

$$\pi = \frac{3\sqrt{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{8^n} \left(\frac{2}{3n+1} + \frac{1}{3n+2}\right).$$

Problem 4. Show that the Bessel function of the first kind of order 0, denoted by J_0 and defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \,,$$

satisfies the differential equation

$$x^{2}y''(x) + xy'(x) + x^{2}y(x) = 0$$
, $y(0) = 1$, $y'(0) = 0$.

Problem 5. Show that the Bessel function of the first kind of order 1, denoted by J_1 and defined by

$$J_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(n+1)! 2^{2n+1}},$$

satisfies the differential equation

$$x^{2}y''(x) + xy'(x) + (x^{2} - 1)y(x) = 0, \qquad y(0) = 0, \ y'(0) = \frac{1}{2}.$$

Problem 6. Suppose that $x_1(t)$ and $x_2(t)$ are functions of t satisfying the following equations

$$x_1''(t) - x_1(t) = 0,$$
 $x_1(0) = 1,$ $x_1'(0) = 0,$
 $x_2''(t) - x_2(t) = 0,$ $x_2(0) = 0,$ $x_2'(0) = 1,$

where ' denotes the derivatives with respect to t.

- 1. Assume that the function $x_1(t)$ and $x_2(t)$ can be written as a power series (on a certain interval), that is, $x_1(t) = \sum_{k=0}^{\infty} a_k t^k$ and $x_2(t) = \sum_{k=0}^{\infty} b_k t^k$. Show that $(k+2)(k+1)a_{k+2} = a_k$ and $(k+2)(k+1)b_{k+2} = b_k \quad \forall k \ge 0$.
- 2. Find a_k and b_k , and conclude that x_1 and x_2 are some functions that we have seen before.
- 3. Find a function x(t) satisfying

$$x''(t) - x(t) = 0$$
, $x(0) = a$, $x'(0) = b$.

Note that x can be written as the linear combination of x_1 and x_2 .

Problem 7. Find the series solution to the differential equation

$$y''(x) + x^2 y(x) = 0$$
, $y(0) = 1 y'(0) = 0$.

What is the radius of convergence of this series solution?

Problem 8. In this problem we try to establish the following theorem

Let the radius of convergence of the power series $f(x) = \sum_{k=0}^{\infty} a_k (x-c)^k$ be r for some r > 0. 1. If $\sum_{k=0}^{\infty} a_k r^k$ converges, then f is continuous at c+r; that is, $\lim_{x \to (c+r)^-} f(x) = f(c+r)$. 2. If $\sum_{k=0}^{\infty} a_k (-r)^k$ converges, then f is continuous at c-r; that is, $\lim_{x \to (c-r)^+} f(x) = f(c-r)$.

Prove case 1 of the theorem above through the following steps.

(1) Let $A = \sum_{k=0}^{\infty} a_k r^k$, and define

$$g(x) = f(rx+c) - A = -\sum_{k=1}^{\infty} a_k r^k + \sum_{k=1}^{\infty} a_k r^k x^k = \sum_{k=0}^{\infty} b_k x^k,$$

where $b_k = a_k r^k$ for each $k \in \mathbb{N}$ and $b_0 = -\sum_{k=1}^{\infty} a_k r^k$. Show that the radius of convergence of g is 1 and $\sum_{k=0}^{\infty} b_k = 0$. Moreover, show that f is continuous at c + r if and only if g is continuous at 1.

(2) Let $s_n = b_0 + b_1 + \dots + b_n$ and $S_n(x) = b_0 + b_1 x + \dots + b_n x^n$. Show that

$$S_n(x) = (1-x)(s_0 + s_1x + \dots + s_{n-1}x^{n-1}) + s_nx^n$$

and conclude that

$$g(x) = \lim_{n \to \infty} S_n(x) = (1-x) \sum_{k=0}^{\infty} s_k x^k \,. \tag{(\star)}$$

(3) Use (\star) to show that g is continuous at 1. Note that you might need to use $\varepsilon - \delta$ argument.