Exercise Problem Sets 3

Mar. 20. 2020

Problem 1. The second Taylor polynomial for a twice-differentiable function f at $x=c$ is called the quadratic approximation of f at $x=c$. Find the quadratic approximate of the following functions at $x=0$.
(1) $f(x)=\ln \cos x$
(2) $f(x)=e^{\sin x}$
(3) $f(x)=\tan x$
(4) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$
(5) $f(x)=e^{x} \sin ^{2} x$
(6) $f(x)=e^{x} \ln (1+x)$
(7) $f(x)=(\arctan x)^{2}$

Problem 2. Let f have derivatives through order n at $x=c$. Show that the n-th Taylor polynomial for f at c and its first n derivatives have the same values that f and its first n derivatives have at $x=c$.

Problem 3. Complete the following.
(1) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous and g is sign-definite; that is, $g(x) \geqslant 0$ for all $x \in[a, b]$ or $g(x) \leqslant 0$ for all $x \in[a, b]$. Show that there exists $c \in[a, b]$ such that

$$
\begin{equation*}
f(c) \int_{a}^{b} g(x) d x=\int_{a}^{b} f(x) g(x) d x \tag{*}
\end{equation*}
$$

(2) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function, and $c \in[a, b]$. Prove (by induction) that if f is $(n+1)$-times continuously differentiable on $[a, b]$, then for all $x \in[a, b]$,

$$
\begin{aligned}
f(x)= & f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n} \\
& +(-1)^{n} \int_{c}^{x} f^{(n+1)}(t) \frac{(t-x)^{n}}{n!} d t \\
= & \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+(-1)^{n} \int_{c}^{x} f^{(n+1)}(t) \frac{(t-x)^{n}}{n!} d t .
\end{aligned}
$$

(3) Use (\star) to show that if f is $(n+1)$-times continuously differentiable on $[a, b]$ and $c \in[a, b]$, then for all $x \in[a, b]$ there exists a point ξ between x and c such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1} .
$$

(4) Find and explain the difference between the conclusion above and Taylor's Theorem.

Problem 4. Suppose that f is differentiable on an interval centered at $x=c$ and that $g(x)=$ $b_{0}+b_{1}(x-c)+\cdots+b_{n}(x-c)^{n}$ is a polynomial of degree n with constant coefficients $b_{0}, b_{1}, \cdots, b_{n}$. Let $E(x)=f(x)-g(x)$. Show that if we impose on g the conditions

1. $E(c)=0$ (which means "the approximation error is zero at $x=c$ ");
2. $\lim _{x \rightarrow c} \frac{E(x)}{(x-c)^{n}}=0$ (which means "the error is negligible when compared to $\left.(x-c)^{n}\right)$,
then g is the n-th Taylor polynomial for f at c. Thus, the Taylor polynomial P_{n} is the only polynomial of degree less than or equal to n whose error is both zero at $x=c$ and negligible when compared with $(x-c)^{n}$.

Problem 5. Show that if p is an polynomial of degree n, then

$$
p(x+1)=\sum_{k=0}^{n} \frac{p^{(k)}(x)}{k!} .
$$

Problem 6. In Chapter 3 we considered Newton's method for approximating a root/zero r of the equation $f(x)=0$, and from an initial approximation x_{1} we obtained successive approximations x_{2}, x_{3}, \cdots, where

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \forall n \geqslant 1 .
$$

Show that if $f^{\prime \prime}$ exists on an interval I containing r, x_{n}, and x_{n+1}, and $\left|f^{\prime \prime}(x)\right| \leqslant M$ and $\left|f^{\prime}(x)\right| \geqslant K$ for all $x \in I$, then

$$
\left|x_{n+1}-r\right| \leqslant \frac{M}{2 K}\left|x_{n}-r\right|^{2}
$$

This means that if x_{n} is accurate to d decimal places, then x_{n+1} is accurate to about $2 d$ decimal places. More precisely, if the error at stage n is at most 10^{-m}, then the error at stage $n+1$ is at most $\frac{M}{2 K} 10^{-2 m}$.
Hint: Apply Taylor's Theorem to write $f(r)=P_{2}(r)+R_{2}(r)$, where P_{2} is the second Taylor polynomial for f at x_{n}.

Problem 7. Consider a function f with continuous first and second derivatives at $x=c$. Prove that if f has a relative maximum at $x=c$, then the second Taylor polynomial centered at $x=c$ also has a relative maximum at $x=c$.

