Exercise Problem Sets 3

Mar. 20. 2020

Problem 1. The second Taylor polynomial for a twice-differentiable function f at x = c is called the quadratic approximation of f at x = c. Find the quadratic approximate of the following functions at x = 0.

(1) $f(x) = \ln \cos x$ (2) $f(x) = e^{\sin x}$ (3) $f(x) = \tan x$ (4) $f(x) = \frac{1}{\sqrt{1-x^2}}$

(5) $f(x) = e^x \sin^2 x$ (6) $f(x) = e^x \ln(1+x)$ (7) $f(x) = (\arctan x)^2$

Problem 2. Let f have derivatives through order n at x = c. Show that the *n*-th Taylor polynomial for f at c and its first n derivatives have the same values that f and its first n derivatives have at x = c.

Problem 3. Complete the following.

(1) Let $f, g: [a, b] \to \mathbb{R}$ be continuous and g is sign-definite; that is, $g(x) \ge 0$ for all $x \in [a, b]$ or $g(x) \le 0$ for all $x \in [a, b]$. Show that there exists $c \in [a, b]$ such that

$$f(c) \int_{a}^{b} g(x) \, dx = \int_{a}^{b} f(x)g(x) \, dx \,. \tag{(\star)}$$

(2) Let $f : [a, b] \to \mathbb{R}$ be a function, and $c \in [a, b]$. Prove (by induction) that if f is (n + 1)-times continuously differentiable on [a, b], then for all $x \in [a, b]$,

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + (-1)^n \int_c^x f^{(n+1)}(t) \frac{(t - x)^n}{n!} dt = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!}(x - c)^k + (-1)^n \int_c^x f^{(n+1)}(t) \frac{(t - x)^n}{n!} dt.$$

(3) Use (\star) to show that if f is (n+1)-times continuously differentiable on [a, b] and $c \in [a, b]$, then for all $x \in [a, b]$ there exists a point ξ between x and c such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}.$$

(4) Find and explain the difference between the conclusion above and Taylor's Theorem.

Problem 4. Suppose that f is differentiable on an interval centered at x = c and that $g(x) = b_0 + b_1(x-c) + \cdots + b_n(x-c)^n$ is a polynomial of degree n with constant coefficients b_0, b_1, \cdots, b_n . Let E(x) = f(x) - g(x). Show that if we impose on g the conditions

1. E(c) = 0 (which means "the approximation error is zero at x = c");

2. $\lim_{x \to c} \frac{E(x)}{(x-c)^n} = 0$ (which means "the error is negligible when compared to $(x-c)^n$),

then g is the n-th Taylor polynomial for f at c. Thus, the Taylor polynomial P_n is the only polynomial of degree less than or equal to n whose error is both zero at x = c and negligible when compared with $(x - c)^n$.

Problem 5. Show that if p is an polynomial of degree n, then

$$p(x+1) = \sum_{k=0}^{n} \frac{p^{(k)}(x)}{k!}$$

Problem 6. In Chapter 3 we considered Newton's method for approximating a root/zero r of the equation f(x) = 0, and from an initial approximation x_1 we obtained successive approximations x_2 , x_3, \dots , where

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \qquad \forall n \ge 1.$$

Show that if f'' exists on an interval I containing r, x_n , and x_{n+1} , and $|f''(x)| \leq M$ and $|f'(x)| \geq K$ for all $x \in I$, then

$$|x_{n+1} - r| \leq \frac{M}{2K}|x_n - r|^2$$

This means that if x_n is accurate to d decimal places, then x_{n+1} is accurate to about 2d decimal places. More precisely, if the error at stage n is at most 10^{-m} , then the error at stage n + 1 is at most $\frac{M}{2K} 10^{-2m}$.

Hint: Apply Taylor's Theorem to write $f(r) = P_2(r) + R_2(r)$, where P_2 is the second Taylor polynomial for f at x_n .

Problem 7. Consider a function f with continuous first and second derivatives at x = c. Prove that if f has a relative maximum at x = c, then the second Taylor polynomial centered at x = c also has a relative maximum at x = c.