Problem 1. Determine whether the series $\sum_{n=1}^{\infty} a_n$ is convergent or divergent.

(1)
$$a_n = \frac{1}{n^{1+\frac{1}{n}}}$$
 (2) $a_n = \ln\left(1 + \frac{1}{n^2}\right)$ (3) $a_n = \frac{2^n + 3^n}{3^n + 4^n}$ (4) $a_n = \tan\frac{1}{n}$

(5)
$$a_n = \sin^n \frac{1}{\sqrt{n}}$$
 (6) $a_n = \frac{\arctan n}{n^{1.1}}$ (7) $a_n = \left[-\ln \left(e^2 + \frac{1}{n^2} \right) \right]^n$ (8) $a_n = \left(1 - \frac{1}{n} \right)^{n^2}$

(9)
$$a_n = \left(1 + \frac{1}{n}\right)^{-n^2}$$
 (10) $a_n = \frac{(n!)^2}{(2n)!}$ (11) $a_n = \frac{n! \ln n}{n(n+2)!}$ (12) $a_n = \frac{n!}{n^n}$

(13)
$$a_n = \frac{(-1)^n (3n)!}{n!(n+1)!(n+2)!}$$
 (14) $a_n = \frac{(-1)^n (n!)^n}{n^{n^2}}$ (15) $a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n n!}$

(16)
$$a_n = (-1)^n \left(\sqrt{n + \sqrt{n}} - \sqrt{n} \right)$$
 (17) $a_n = (-1)^n \frac{(n!)^2 3^n}{(2n+1)!}$

Problem 2. Find all p and q such that $\sum_{k=2}^{\infty} \frac{(\ln k)^q}{k^p}$ converges.

Problem 3. Show that if $\sum_{k=1}^{\infty} a_k$ is a convergent series of positive terms, then $\sum_{k=1}^{\infty} \sin a_k$ converges.

Problem 4. Let $S = \sum_{k=1}^{\infty} \frac{1}{k^2}$. Euler found that $S = \frac{\pi^2}{6}$ in 1735 AD.

(1) Show that
$$S = 1 + \sum_{k=1}^{\infty} \frac{1}{n^2(n+1)}$$
.

(2) Which of the sums $\sum_{k=1}^{1000000} \frac{1}{k^2}$ or $1 + \sum_{k=1}^{1000} \frac{1}{k^2(k+1)}$ should give a better approximation of S? Explain your answer.

Hint: (1)
$$\frac{1}{n^2(n+1)} = \frac{1}{n^2} - \frac{1}{n(n+1)}$$
.

Problem 5. Find all real numbers x such that $\sum_{k=1}^{\infty} \frac{\cos(kx)}{\ln k}$ converges.

Problem 6. Show by example that $\sum_{k=1}^{\infty} a_k b_k$ may diverge even if $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge.

Problem 7. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers such that $a_n, b_n > 0$ for all $n \ge N$. Define

$$c_n = b_n - b_{n+1} \frac{a_{n+1}}{a_n} \qquad \forall n \in \mathbb{N} . \tag{*}$$

1. Show that if there exists a constant r > 0 such that $r < c_n$ for all $n \ge N$, then $\sum_{k=1}^{\infty} a_k$ converges.

Hint: Rewrite (\star) as $b_n = c_n + \frac{a_{n+1}}{a_n} b_{n+1}$ and then obtain

$$b_{N} = c_{N} + \frac{a_{N+1}}{a_{N}}b_{N+1} = c_{N} + \frac{a_{N+1}}{a_{N}}\left(c_{N+1} + \frac{a_{N+2}}{a_{N+1}}b_{N+2}\right) = c_{N} + \frac{a_{N+1}}{a_{N}}c_{N+1} + \frac{a_{N+2}}{a_{N}}b_{N+2}$$

$$= c_{N} + \frac{a_{N+1}}{a_{N}}c_{N+1} + \frac{a_{N+2}}{a_{N}}\left(c_{N+2} + \frac{a_{N+3}}{a_{N+2}}b_{N+3}\right) = \cdots$$

$$= c_{N} + \frac{a_{N+1}}{a_{N}}c_{N+1} + \frac{a_{N+2}}{a_{N}}c_{N+2} + \cdots + \frac{a_{N+n}}{a_{N}}c_{N+n} + \frac{a_{N+n+1}}{a_{N}}b_{N+n+1}.$$

Use the fact that $0 < r < c_n$ for all $n \ge N$ to conclude that

$$\sum_{k=N}^{N+n} a_k \leqslant \frac{a_N b_N}{r} \qquad \forall \, n \in \mathbb{N} \,.$$

Note that then the sequence of partial sum of $\sum_{k=1}^{\infty} a_k$ then is bounded from above (by $\sum_{k=1}^{N-1} a_k + \frac{a_N b_N}{r}$).

2. Show that if $\sum_{k=1}^{\infty} \frac{1}{b_k}$ diverges and $c_n \leq 0$ for all $n \geq N$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Hint: The fact that $c_n \leq 0$ for all $n \geq N$ implies that $b_n a_n \leq b_{n+1} a_{n+1}$ for all $n \geq N$. Use this fact to conclude that

$$\frac{a_N b_N}{b_n} \leqslant a_n \qquad \forall \, n \geqslant N$$

and then apply the direct comparison test to conclude that $\sum_{k=1}^{\infty} a_k$ diverges.

Problem 8. Let $\sum_{k=1}^{\infty} a_k$ be a series with positive terms, and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$. We know from class that the ratio test fails when this happens, but there are some refined results concerning this particular case.

1. (Raabe's test):

- (a) If there exists a constant $\mu > 1$ such that $\frac{a_{n+1}}{a_n} < 1 \frac{\mu}{n}$ for all $n \ge N$, then $\sum_{k=1}^{\infty} a_k$ converges.
- (b) If there exists a constant $0 < \mu < 1$ such that $\frac{a_{n+1}}{a_n} > 1 \frac{\mu}{n}$ for all $n \ge N$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Hint: Consider the sequence $\{b_n\}_{n=1}^{\infty}$ defined by $b_n = (n-1)a_n - na_{n+1}$. Then $\sum_{k=1}^{\infty} b_k$ is a telescoping series. For case (a), show that $\{na_{n+1}\}_{n=N}^{\infty}$ is a positive decreasing sequence and then conclude that $\sum_{k=1}^{\infty} b_k$ converges. Note that $b_n \ge (\mu - 1)a_n$ for all $n \ge N$. For case (b), show that $\{na_{n+1}\}_{n=N}^{\infty}$ is a positive increasing sequence; thus $a_n \ge \frac{Na_{N+1}}{n-1}$ for all $n \ge N+1$ which implies that $\sum_{k=1}^{\infty} a_k$ diverges.

Remark: 注意到 (a) 說的是如果 $\{a_n\}_{n=1}^{\infty}$ 在某項之後「遞減得夠快」,那麼 $\sum\limits_{k=1}^{\infty}a_k$ 收斂。反之,如果 $\{a_n\}_{n=1}^{\infty}$ 「並非遞減得那麼快」,那麼 $\sum\limits_{k=1}^{\infty}a_k$ 發散。

2. (Gauss's test): Suppose that there exist a positive constant $\epsilon > 0$, a constant μ , and a bounded sequence $\{R_n\}_{n=1}^{\infty}$ such that

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\mu}{n} + \frac{R_n}{n^{1+\epsilon}} \quad \text{for all } n \geqslant N.$$

(a) If
$$\mu > 1$$
, then $\sum_{k=1}^{\infty} a_k$ converges. (b) If $\mu \leq 1$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Hint: Show that if $\mu > 1$ or $\mu < 1$, one can apply Raabe's test to conclude Gauss's test. For the case $\mu = 1$, let $b_n = (n-1)\ln(n-1)$ for $n \ge 2$. Using the second result of Problem 7 to show the divergence of $\sum_{k=1}^{\infty} a_k$ (by showing that c_n defined by (\star) is non-positive for all large enough n).

Problem 9. Complete the following.

- 1. Show that $\sum_{k=1}^{\infty} \left(1 \frac{1}{\sqrt{k}}\right)^k$ converges.
- 2. Show that $\sum_{k=2}^{\infty} \frac{\log(k+1) \log k}{(\log k)^2}$ converges.
- 3. Use Gauss's test to show that both the general harmonic series $\sum_{k=1}^{\infty} \frac{1}{ak+b}$, where $a \neq 0$, and the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverge.
- 4. Show that $\sum_{k=1}^{\infty} \frac{k!}{(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$ converges if $\alpha > 1$ and diverges if $\alpha \leq 1$.
- 5. Test the following "hypergeometric" series for convergence or divergence:

(a)
$$\sum_{k=1}^{\infty} \frac{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k-1)}{\beta(\beta+1)(\beta+2)\cdots(\beta+k-1)} = \frac{\alpha}{\beta} + \frac{\alpha(\alpha+1)}{\beta(\beta+1)} + \frac{\alpha(\alpha+1)(\alpha+2)}{\beta(\beta+1)(\beta+2)} + \cdots$$

(b)
$$1 + \frac{\alpha \cdot \beta}{1 \cdot \gamma} + \frac{\alpha(\alpha+1) \cdot \beta(\beta+1)}{1 \cdot 2\gamma \cdot (\gamma+1)} + \frac{\alpha(\alpha+1)(\alpha+2) \cdot \beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma+1)(\gamma+2)} + \cdots$$

Problem 10. Let $\sum_{k=1}^{\infty} a_k$ be a conditionally convergent series. Show that $\sum_{k=1}^{\infty} \left[1 + \operatorname{sgn}(a_k)\right] a_k$ and $\sum_{k=1}^{\infty} \left[1 - \operatorname{sgn}(a_k)\right] a_k$ both diverge. Here the sign function sgn is defined by

$$sgn(a) = \begin{cases} 1 & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -1 & \text{if } a < 0. \end{cases}$$

Problem 11. A permutation of a non-empty set A is a one-to-one function from A onto A. Let $\pi: \mathbb{N} \to \mathbb{N}$ be a permutation of \mathbb{N} .

- 1. Suppose that $\{a_n\}_{n=1}^{\infty}$ be a convergent sequence of real numbers. Show that $\{a_{\pi(n)}\}_{n=1}^{\infty}$ is also convergent; that is, show that if $\{b_n\}_{n=1}^{\infty}$ is a sequence defined by $b_n = a_{\pi(n)}$, then $\{b_n\}_{n=1}^{\infty}$ also converges.
- 2. Suppose that $\sum_{k=1}^{\infty} a_k$ is absolutely convergent. Show that $\sum_{k=1}^{\infty} a_{\pi(k)}$ is also absolutely convergent, and

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_{\pi(k)}.$$

3. Suppose that $\sum_{k=1}^{\infty} a_k$ is conditionally convergent. Show that for each $r \in \mathbb{R}$, there exists a permutation $\pi : \mathbb{N} \to \mathbb{N}$ such that

$$\sum_{k=1}^{\infty} a_{\pi(k)} = r.$$