## Exercise Problem Sets 1

Mar. 6. 2020

Problem 1. Determine whether the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges or diverges. If it converges, find the limit.
(1) $a_{n}=\frac{\ln n}{\ln (2 n)}$
(2) $a_{n}=\frac{(-1)^{n+1} n}{n+\sqrt{n}}$
(3) $a_{n}=n \sin \frac{1}{n}$
(4) $a_{n}=n-\sqrt{n+1} \sqrt{n+3}$
(5) $a_{n}=\sqrt[n]{n^{2}+n}$
(6) $a_{n}=\left(3^{n}+5^{n}\right)^{\frac{1}{n}}$
(7) $a_{n}=\frac{1}{\sqrt{n^{2}-1}-\sqrt{n^{2}+n}}$
(8) $a_{n}=\sqrt{n} \ln \left(1+\frac{1}{n}\right)$
(9) $a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{2^{n} n!}$
(10) $a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{2^{n}(n+1)!}$.

Problem 2. Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ is convergent or divergent. If it is convergent, find its sum.
(1) $a_{n}=\frac{1}{1+\left(\frac{2}{3}\right)^{n}}$
(2) $a_{n}=\ln \left(\frac{n^{2}+1}{2 n^{2}+1}\right)$
(3) $a_{n}=e^{-n}+\frac{1}{n(n+1)}$
(4) $a_{n}=\frac{1}{n^{3}-n}$
(5) $a_{n}=\frac{40 n}{(2 n-1)^{2}(2 n+1)^{2}}$

Problem 3. Find values of $x$ for which the following series converges.
(1) $\sum_{n=1}^{\infty}(-4)^{n}(x-5)^{n}$
(2) $\sum_{n=1}^{\infty} \frac{2^{n}}{x^{n}}$
(3) $\sum_{n=1}^{\infty} \frac{\sin ^{n} x}{3^{n}}$
(4) $\sum_{n=1}^{\infty} e^{n x}$.

Problem 4. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers.
(1) Show that if $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)$ D.N.E. and $\lim _{n \rightarrow \infty} b_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}$ D.N.E.
(2) Show that if $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ diverges and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Problem 5. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers, and $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers defined by

$$
\sigma_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k} .
$$

(1) Show that if $\lim _{n \rightarrow \infty} a_{n}=a$ exists, then $\lim _{n \rightarrow \infty} \sigma_{n}=a$.
(2) Suppose that $\lim _{n \rightarrow \infty} \sigma_{n}=a$ exists, is it necessary that $\lim _{n \rightarrow \infty} a_{n}=a$ ?

Problem 6. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of real numbers defined recursively by

$$
a_{n+1}=\sqrt{1+a_{n}} \quad \forall n \in \mathbb{N} \cup\{0\}, a_{0}=0 .
$$

Show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges and find the limit.
Problem 7. Let $a_{n}=\left(1+\frac{1}{n}\right)^{n}$.
(1) Show that if $0 \leqslant a<b$, then

$$
\frac{b^{n+1}-a^{n+1}}{b-a}<(n+1) b^{n}
$$

(2) Deduce that $b^{n}[(n+1) a-n b]<a^{n+1}$.
(3) Use $a=1+\frac{1}{n+1}$ and $b=1+\frac{1}{n}$ in (2) to show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is (strictly) increasing.
(4) Use $a=1$ and $b=1+\frac{1}{2 n}$ in (2) to show that $a_{2 n}<4$.
(5) Use (3) and (4) to show that $a_{n}<4$.
(6) Deduce that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges.

Problem 8. Let $a, b$ be positive real numbers, $a>b$. Let two sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be given by the recursive relation

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, b_{n+1}=\sqrt{a_{n} b_{n}} \quad \forall n \in \mathbb{N}, \quad a_{1}=\frac{a+b}{2}, b_{1}=\sqrt{a b} .
$$

Complete the following.
(1) Show (by induction) that $a_{n}>a_{n+1}>b_{n+1}>b_{n}$ for all $n \in \mathbb{N}$.
(2) Deduce that $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ both converges.
(3) Show that $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ both exist and are identical.

Problem 9. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of real number defined by the recursive relation

$$
a_{n+1}=\frac{1}{2+a_{n}} \quad \forall n \geqslant 0, \quad a_{0}=\frac{1}{2}
$$

Complete the following.
(1) Show that the sequence $\left\{a_{2 n}\right\}_{n=0}^{\infty}$ is a decreasing sequence; that is, $a_{2 n+2} \leqslant a_{2 n}$ for all $n \in \mathbb{N} \cup\{0\}$.
(2) Show that the sequence $\left\{a_{2 n+1}\right\}_{n=0}^{\infty}$ is an increasing sequence; that is, $a_{2 n+3} \geqslant a_{2 n+1}$ for all $n \in \mathbb{N} \cup\{0\}$.
(3) Show that $a_{2 k+1} \leqslant a_{2 \ell}$ for all $k, \ell \in \mathbb{N} \cup\{0\}$.
(4) Show that the two sequences $\left\{a_{2 n}\right\}_{n=0}^{\infty}$ and $\left\{a_{2 n+1}\right\}_{n=0}^{\infty}$ converges to the same limit.
(5) Show that $\left\{a_{n}\right\}_{n=0}^{\infty}$ converges.

Problem 10. The Fibonacci sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence defined recursively by

$$
f_{1}=1, \quad f_{2}=1 \quad \text { and } \quad f_{n+2}=f_{n+1}+f_{n} \quad \forall n \in \mathbb{N} .
$$

Show the following.
(1) $\frac{1}{f_{n-1} f_{n+1}}=\frac{1}{f_{n-1} f_{n}}-\frac{1}{f_{n} f_{n+1}}$ for all $n \geqslant 2$.
(2) $\sum_{n=2}^{\infty} \frac{1}{f_{n-1} f_{n+1}}=1$.
(3) $\sum_{n=2}^{\infty} \frac{f_{n}}{f_{n-1} f_{n+1}}=2$.

Problem 11. Consider the series $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$.
(1) Find the partial sum $S_{1}, S_{2}, S_{3}$ and $S_{4}$. Do you recognize the denominators? Use the pattern to guess a formula for $S_{n}$.
(2) Prove your guess by induction.
(3) Show that the given series is convergent, and find the sum.

