- Area of regions enclosed by simple closed curves

Let C be a simple closed curve in the plane parameterized by $r:[a, b] \rightarrow \mathbb{R}^{2}$. Suppose that

1. $\boldsymbol{r}(t)=(x(t), y(t))$ moves counter-clockwise (that is, the region enclosed by C is on the left-hand side when moving along C) as t increases.
2. There exists $c \in(a, b)$ such that x is strictly decreasing on $[a, c]$ and is strictly increasing on $[c, b]$.
3. $x^{\prime} y$ is Riemann integrable on $[a, b]$ (for example, x is continuously differentiable on $[a, b])$.

Based on the assumption above, in the following we "prove" that

$$
\begin{equation*}
\text { the area of the region enclosed by } C \text { is }-\int_{a}^{b} x^{\prime}(t) y(t) d t \tag{0.1}
\end{equation*}
$$

Let $\varepsilon>0$ be given. Since $x^{\prime} y$ is Riemann integrable on $[a, b]$, there exists $\delta>0$ such that if \mathcal{P} is a partition of $[a, b]$ satisfying $\|\mathcal{P}\|<\delta$, then

$$
\text { any Riemann sum of } x^{\prime} y \text { for } \mathcal{P} \text { lies in }\left(\int_{a}^{b} x^{\prime}(t) y(t) d t-\varepsilon, \int_{a}^{b} x^{\prime}(t) y(t) d t+\varepsilon\right) .
$$

Let $\mathcal{P}=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=c=s_{0}<s_{1}<\cdots<s_{n}=b\right\}$ be a partition of $[a, b]$ satisfying $\|\mathcal{P}\|<\delta$ and $x\left(t_{n-k}\right)=x\left(s_{k}\right) \equiv x_{k}$ for all $0 \leqslant k \leqslant n$. By the mean value theorem, for each $1 \leqslant k \leqslant n$ there exist $c_{k} \in\left[t_{k-1}, t_{k}\right]$ and $d_{k} \in\left[s_{k-1}, s_{k}\right]$ such that

$$
\begin{equation*}
x\left(t_{k}\right)-x\left(t_{k-1}\right)=x^{\prime}\left(c_{k}\right)\left(t_{k}-t_{k-1}\right) \quad \text { and } \quad x\left(s_{k}\right)-x\left(s_{k-1}\right)=x^{\prime}\left(d_{k}\right)\left(s_{k}-s_{k-1}\right) . \tag{0.2}
\end{equation*}
$$

Then

$$
\left|\sum_{k=1}^{n} x^{\prime}\left(c_{k}\right) y\left(c_{k}\right)\left(t_{k}-t_{k-1}\right)+\sum_{k=1}^{n} x^{\prime}\left(d_{k}\right) y\left(d_{k}\right)\left(s_{k}-s_{k-1}\right)-\int_{a}^{b} x^{\prime}(t) y(t) d t\right|<\varepsilon .
$$

Using (0.2), we find that

$$
\begin{aligned}
& \left|\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right)\left[y\left(c_{n-k+1}\right)-y\left(d_{k}\right)\right]-\left(-\int_{a}^{b} x^{\prime}(t) y(t)\right) d t\right| \\
& \quad=\left|\sum_{k=1}^{n}\left(x_{k-1}-x_{k}\right) y\left(c_{n-k+1}\right)+\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) y\left(d_{k}\right)-\int_{a}^{b} x^{\prime}(t) y(t) d t\right| \\
& \quad=\left|\sum_{k=1}^{n}\left(x_{n-k}-x_{n-k+1}\right) y\left(c_{k}\right)+\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) y\left(d_{k}\right)-\int_{a}^{b} x^{\prime}(t) y(t) d t\right| \\
& \quad=\left|\sum_{k=1}^{n}\left(x\left(t_{k}\right)-x\left(t_{k-1}\right)\right) y\left(c_{k}\right)+\sum_{k=1}^{n}\left(x\left(s_{k}\right)-x\left(s_{k-1}\right)\right) y\left(d_{k}\right)-\int_{a}^{b} x^{\prime}(t) y(t) d t\right|<\varepsilon .
\end{aligned}
$$

Since $\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right)\left[y\left(c_{n-k+1}\right)-y\left(d_{k}\right)\right]$ is an approximation of the area of the region enclosed
by $C,(0.1)$ is concluded.
Similar argument can be applied to conclude that

$$
\begin{equation*}
\text { the area of the region enclosed by } C \text { is } \int_{a}^{b} x(t) y^{\prime}(t) d t \tag{0.3}
\end{equation*}
$$

if $x y^{\prime}$ is Riemann integrable on $[a, b]$. Combining (0.1) and (0.3), we obtain that

$$
\begin{equation*}
\text { the area of the region enclosed by } C \text { is } \frac{1}{2} \int_{a}^{b}\left[x(t) y^{\prime}(t)-x^{\prime}(t) y(t)\right] d t \tag{0.4}
\end{equation*}
$$

Example 0.1. Let C be the curve parameterized by $\boldsymbol{r}(t)=(\cos t, \sin t), t \in[0,2 \pi]$. Then clearly \boldsymbol{r} satisfies condition 1-3. Therefore, the area of the region enclosed by C can be computed by the following three ways:

1. Using (0.1),

$$
-\int_{0}^{2 \pi} \frac{d \cos t}{d t} \sin t d t=\int_{0}^{2 \pi} \sin ^{2} t d t=\int_{0}^{2 \pi} \frac{1-\cos (2 t)}{2} d t=\left.\frac{1}{2}\left(t-\frac{\sin (2 t)}{2}\right)\right|_{t=0} ^{t=2 \pi}=\pi .
$$

2. Using (0.3),

$$
\int_{0}^{2 \pi} \cos t \frac{d \sin t}{d t} d t=\int_{0}^{2 \pi} \cos ^{2} t d t=\int_{0}^{2 \pi} \frac{1+\cos (2 t)}{2} d t=\left.\frac{1}{2}\left(t+\frac{\sin (2 t)}{2}\right)\right|_{t=0} ^{t=2 \pi}=\pi
$$

3. Using (0.4),

$$
\frac{1}{2} \int_{0}^{2 \pi}\left(\cos t \frac{d \sin t}{d t}-\frac{d \cos t}{d t} \sin t\right) d t=\frac{1}{2} \int_{0}^{2 \pi}\left(\cos ^{2} t+\sin ^{2} t\right) d t=\frac{1}{2} \int_{0}^{2 \pi} 1 d t=\pi
$$

