Calculus MA1001-B Final Exam Sample

National Central University, Jan. 7, 2019

Problem 1. For positive integer n, let $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$. Complete the following

1. Show that P_{n} is a polynomial of degree n.
2. Show that $\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{m}=0$ at $x= \pm 1$ if $m>n$.
3. Show that $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\left\{\begin{array}{cl}0 & \text { if } m \neq n, \\ \frac{1}{2 n+1} & \text { if } m=n .\end{array}\right.$ (Integration by parts)

Problem 2. Compute the indefinite integral $\int \sec ^{3} x d x$ using the following methods:

1. Obtain a recurrence relation for the integral of $\int \sec ^{n} x d x$ using integration by parts and find the integral. (Integration by parts and induction)
2. Use the substitution $\tan \frac{x}{2}=\frac{1-t}{1+t}$ (without any other substitution of variables) and the technique of partial fractions to find the integral. (Integration by substitution and partial fractions)

Problem 3. Find the indefinite integral $\int x^{3} \arcsin x d x$ using integration by parts with $u=x^{3}$ and $d v=\arcsin x d x$. (Integration by parts)

Problem 4. Let k be a positive integer. Use the techniques of partial fractions to show that

$$
\int \frac{d x}{x^{2 k-1}\left(x^{2}+1\right)}=\sum_{j=1}^{k-1} \frac{(-1)^{j+1}}{2 j-2 k} x^{2 j-2 k}+(-1)^{k-1} \ln |x|+\frac{(-1)^{k}}{2} \ln \left(x^{2}+1\right)+C .
$$

(Partial fractions)
Problem 5. Evaluate $\int_{-1}^{1}\left(1+4 x^{2}\right) \ln \frac{\sqrt{5}+2 \sqrt{1-x^{2}}}{\sqrt{1+4 x^{2}}} d x$. (Techniques of integrations)
Problem 6. Show that the improper integral $\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$ converges for $\alpha>0$ using the comparison test for improper integrals. (Convergence of the improper integral)

