Calculus MA1001－B Quiz 10

National Central University，Dec． 032019
學號： \qquad姓名： \qquad
Problem 1．（2pts）Use the definition of exp to show that $\exp (a+b)=\exp (a) \exp (b)$ for all $a, b \in \mathbb{R}$ ． Proof．Let $a, b \in \mathbb{R}$ be given，and $\exp (a)=c, \exp (b)=d$ ．By definition， \exp is the inverse function of \ln ；thus $a=\ln c$ and $b=\ln d$ ．By the logarithmic property of $\ln , \ln (c d)=\ln c+\ln d$ ；thus

$$
\begin{equation*}
\exp (a+b)=\exp (\ln c+\ln d)=\exp (\ln (c d))=c d=\exp (a) \exp (b) . \tag{ㅁ}
\end{equation*}
$$

Problem 2．（4pts）Show that the function $f(x)=\left(1+\frac{1}{x}\right)^{x+1}$ is decreasing on $(0, \infty)$ ．
Solution．Note that $f(x)=\exp \left((x+1) \ln \left(1+\frac{1}{x}\right)\right)$ ．Therefore，

$$
\begin{aligned}
f^{\prime}(x) & =\exp \left((x+1) \ln \left(1+\frac{1}{x}\right)\right) \frac{d}{d x}\left[(x+1) \ln \left(1+\frac{1}{x}\right)\right]=f(x)\left[\ln \left(1+\frac{1}{x}\right)+(x+1) \frac{-1 / x^{2}}{1+1 / x}\right] \\
& =f(x)\left[\ln \left(1+\frac{1}{x}\right)-\frac{1}{x}\right]
\end{aligned}
$$

Let $g(x)=\ln \left(1+\frac{1}{x}\right)-\frac{1}{x}$ ．Then

$$
g^{\prime}(x)=\frac{-1 / x^{2}}{1+1 / x}+\frac{1}{x^{2}}=-\frac{1}{x(x+1)}+\frac{1}{x^{2}}=\frac{-x+(x+1)}{x^{2}(x+1)}=\frac{1}{x^{2}(x+1)}>0 ;
$$

thus g is increasing on $(0, \infty)$ and for $x>0, g(x) \leqslant \lim _{x \rightarrow \infty} g(x)=0$ ．Therefore，g is non－positive on $(0, \infty)$ which implies that $f^{\prime}(x) \leqslant 0$ for all $x>0$ ．As a consequence，f is decreasing on $(0, \infty)$ ．
Problem 3．（4pts）Find all the asymptotes of the graph of the function $f(x)=\frac{2^{x}+5^{-x}}{5 \cdot 2^{x}-2 \cdot 5^{-x}}$ ．
Solution．First we note that the denominator has a zero at $c=2 \log _{10} 2-1$ since

$$
5 \cdot 2^{x}=2 \cdot 5^{-x} \quad \Leftrightarrow \quad 10^{x}=0.4 \quad \Leftrightarrow \quad x=\log _{10} 0.4=2 \log _{10} 2-1 .
$$

Moreover， $\lim _{x \rightarrow c^{+}} f(x)=\infty$ and $\lim _{x \rightarrow c^{-}} f(x)=-\infty$ ，we find that $x=c$ is a vertical asymptote．
Next we check if there are slant／horizontal asymptote．Note that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{2^{x}+5^{-x}}{x\left(5 \cdot 2^{x}-2 \cdot 5^{-x}\right)}=\lim _{x \rightarrow \infty} \frac{1+10^{-x}}{x\left(5-2 \cdot 10^{-x}\right)}=0
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} \frac{2^{x}+5^{-x}}{x\left(5 \cdot 2^{x}-2 \cdot 5^{-x}\right)}=\lim _{x \rightarrow-\infty} \frac{10^{x}+1}{x\left(5 \cdot 10^{x}-2\right)}=0 .
$$

Moreover，

$$
\lim _{x \rightarrow \infty}[f(x)-0 \cdot x]=\lim _{x \rightarrow \infty} \frac{2^{x}+5^{-x}}{5 \cdot 2^{x}-2 \cdot 5^{-x}}=\lim _{x \rightarrow \infty} \frac{1+10^{-x}}{5-2 \cdot 10^{-x}}=\frac{1}{5}
$$

and

$$
\lim _{x \rightarrow-\infty}[f(x)-0 \cdot x]=\lim _{x \rightarrow-\infty} \frac{2^{x}+5^{-x}}{5 \cdot 2^{x}-2 \cdot 5^{-x}}=\lim _{x \rightarrow-\infty} \frac{10^{x}+1}{5 \cdot 10^{x}-2}=-\frac{1}{2} .
$$

Therefore，$y=\frac{1}{5}$ and $y=-\frac{1}{2}$ are horizontal asymptotes of the graph of f ．

