Calculus MA1001－B Quiz 5

National Central University，Oct． 222019

學號：

\qquad姓名： \qquad

Problem 1．（2pts）State the Mean Value Theorem．
Solution．Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous．If f is differentiable on (a, b) ，then there exists $c \in(a, b)$ such that

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \tag{ㅁ}
\end{equation*}
$$

Problem 2．Let $f:[0, \pi] \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{x^{2}}{\pi}+\cos x$ ，and $x_{0}=\frac{\pi}{2}$ ．
（a）（1pt）Show that x_{0} is a critical point of f ．
（b）（1pt）Use the second derivative test to determine whether $f\left(x_{0}\right)$ is a local maximum or local minimum of f ．
（c）（3pt）Show that f is strictly decreasing on $\left(0, x_{0}\right)$ and strictly increasing on $\left(x_{0}, \pi\right)$ ．
（d）（1pts）Use the first derivative test to determine whether $f\left(x_{0}\right)$ is a local maximum or local minimum of f ．
（e）（2pts）Show that $f(x) \geqslant 1$ for all $x \in[0, \pi]$ ．
Solution．（a）Since $f^{\prime}(x)=\frac{2 x}{\pi}-\sin x, f^{\prime}\left(x_{0}\right)=\frac{2}{\pi} \cdot \frac{\pi}{2}-\sin \frac{\pi}{2}=0$ ；thus x_{0} is a critical point of f ．
（b）Since $f^{\prime \prime}\left(x_{0}\right)=\frac{2}{\pi}-\cos x_{0}=\frac{2}{\pi}>0$ ，the second derivative test implies that $f\left(x_{0}\right)$ is a local minimum of f ．
（c）Note that $f^{\prime}(x)=\frac{2 x}{\pi}-\sin x$ ．Clearly，$f^{\prime}(x)>0$ if $x \in\left(x_{0}, \pi\right)$ ；thus f is strictly increasing on $\left(x_{0}, \pi\right)$ ．Next we show that $f^{\prime}(x)<0$ for all $x \in\left(0, x_{0}\right)$ ．To see this，we let $g(x)=f^{\prime}(x)$ ． Note that $g^{\prime}(x)=\frac{2}{\pi}-\cos x$ ．Since the cosine function is strictly decreasing on $[0, \pi], g^{\prime}$ is strictly increasing on $[0, \pi]$ ．By the fact that $\cos \pi=-1<\frac{2}{\pi}<1=\cos 0$ ，the Intermediate Value Theorem implies that there is only one $x_{0} \in[0, \pi]$ satisfying that $g^{\prime}\left(x_{0}\right)=0$ ．Since $g^{\prime \prime}\left(x_{0}\right)=\sin x_{0}>0, g\left(x_{0}\right)$ is a local minimum of g ；thus g attains its maximum at 0 or x_{0} ． Since $g(0)=0$ and $g\left(x_{0}\right)=0$ ，we find that $g(x)<0$ for all $x \in\left(0, x_{0}\right)$ ．
（d）From（c），we find that f^{\prime} changes from negative to positive at x_{0} ；thus $f\left(x_{0}\right)$ is a local minimum of f ．
（e）From（c）and the fact that x_{0} is a critical point of f ，we find that x_{0} is the only critical point of f ．Now，$f\left(x_{0}\right)=\frac{\pi}{4}, f(0)=1$ and $f(\pi)=\pi-1>1$ ，we find that the minimum of f on $[0, \pi]$ is $f\left(x_{0}\right)=\frac{\pi}{4}$ ；thus $f(x) \geqslant \frac{\pi}{4}$ all $x \in[0, \pi]$ ．

