Calculus MA1001-B Quiz 5

National Central University, Oct. 22 2019

學號:______ 姓名:_____

Problem 1. (2pts) State the Mean Value Theorem.

Solution. Let $f : [a, b] \to \mathbb{R}$ be continuous. If f is differentiable on (a, b), then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Problem 2. Let $f: [0, \pi] \to \mathbb{R}$ be defined by $f(x) = \frac{x^2}{\pi} + \cos x$, and $x_0 = \frac{\pi}{2}$.

- (a) (1pt) Show that x_0 is a critical point of f.
- (b) (1pt) Use the second derivative test to determine whether $f(x_0)$ is a local maximum or local minimum of f.
- (c) (3pt) Show that f is strictly decreasing on $(0, x_0)$ and strictly increasing on (x_0, π) .
- (d) (1pts) Use the first derivative test to determine whether $f(x_0)$ is a local maximum or local minimum of f.
- (e) (2pts) Show that $f(x) \ge 1$ for all $x \in [0, \pi]$.

Solution. (a) Since $f'(x) = \frac{2x}{\pi} - \sin x$, $f'(x_0) = \frac{2}{\pi} \cdot \frac{\pi}{2} - \sin \frac{\pi}{2} = 0$; thus x_0 is a critical point of f.

- (b) Since $f''(x_0) = \frac{2}{\pi} \cos x_0 = \frac{2}{\pi} > 0$, the second derivative test implies that $f(x_0)$ is a local minimum of f.
- (c) Note that $f'(x) = \frac{2x}{\pi} \sin x$. Clearly, f'(x) > 0 if $x \in (x_0, \pi)$; thus f is strictly increasing on (x_0, π) . Next we show that f'(x) < 0 for all $x \in (0, x_0)$. To see this, we let g(x) = f'(x). Note that $g'(x) = \frac{2}{\pi} - \cos x$. Since the cosine function is strictly decreasing on $[0, \pi]$, g' is strictly increasing on $[0, \pi]$. By the fact that $\cos \pi = -1 < \frac{2}{\pi} < 1 = \cos 0$, the Intermediate Value Theorem implies that there is only one $x_0 \in [0, \pi]$ satisfying that $g'(x_0) = 0$. Since $g''(x_0) = \sin x_0 > 0$, $g(x_0)$ is a local minimum of g; thus g attains its maximum at 0 or x_0 . Since g(0) = 0 and $g(x_0) = 0$, we find that g(x) < 0 for all $x \in (0, x_0)$.
- (d) From (c), we find that f' changes from negative to positive at x_0 ; thus $f(x_0)$ is a local minimum of f.
- (e) From (c) and the fact that x_0 is a critical point of f, we find that x_0 is the only critical point of f. Now, $f(x_0) = \frac{\pi}{4}$, f(0) = 1 and $f(\pi) = \pi - 1 > 1$, we find that the minimum of f on $[0, \pi]$ is $f(x_0) = \frac{\pi}{4}$; thus $f(x) \ge \frac{\pi}{4}$ all $x \in [0, \pi]$.