Calculus MA1001-B Quiz 4

National Central University, Oct. 15 2019

Problem 1. (2%) Let f be a function defined on an open interval I containing c. Show that if f is differentiable at c, then f is continuous at c.

Proof. Suppose that f is differentiable at c. Then $\lim_{x\to c} \frac{f(x) - f(c)}{x - c} = f'(c)$ exists. Since $\lim_{x\to c} (x - c) = 0$ also exists, we must have

$$\lim_{x \to c} \left[f(x) - f(c) \right] = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \cdot (x - c) \right) = \left(\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \right) \left(\lim_{x \to c} (x - c) \right) = f'(c) \cdot 0 = 0;$$

thus $\lim_{x \to c} f(x) = \lim_{x \to c} \left[f(x) - f(c) \right] + \lim_{x \to c} f(c) = f(c)$ which shows that f is continuous at c.

Problem 2. (4%) Let $f, g : \mathbb{R} \to \mathbb{R}$ be twice differentiable functions. Show that if y = f(u) and u = g(x), then

$$\frac{d^2y}{dx^2} = \frac{d^2y}{du^2} \left(\frac{du}{dx}\right)^2 + \frac{dy}{du}\frac{d^2u}{dx^2}$$

Proof. By the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

thus the product rule further implies that

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{du} \frac{du}{dx} \right) = \left(\frac{d}{dx} \frac{dy}{du} \right) \frac{du}{dx} + \frac{dy}{du} \left(\frac{d}{dx} \frac{du}{dx} \right) = \left(\frac{d^2y}{du^2} \frac{du}{dx} \right) \frac{du}{dx} + \frac{dy}{du} \frac{d^2u}{dx^2}$$
$$= \frac{d^2y}{du^2} \left(\frac{du}{dx} \right)^2 + \frac{dy}{du} \frac{d^2u}{dx^2}.$$

Problem 3. (4%) The equation $x^2 - xy + y^2 = 3$ represents a "rotated ellipse"; that is, an ellipse whose axes are not parallel to the coordinate axes. Find the points at which this ellipse crosses the *x*-axis and show that the tangent lines at these points are parallel.

Solution. First we solves for the x-intercepts of the ellipse. Suppose that the ellipse crosses the x-axis at (x, 0). Then

$$x^2 - x \cdot 0 + 0^2 = 3$$

which shows that the ellipse crosses the x-axis at $(\pm\sqrt{3}, 0)$. By implicit differentiation, the slope $\frac{dy}{dx}$ of the tangent line of the ellipse at (x, y) satisfies that

$$2x - y - x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$$

which implies that $\frac{dy}{dx} = \frac{2x - y}{x - 2y}$ if $x \neq 2y$. In particular,

$$\frac{dy}{dx}\Big|_{(x,y)=(\sqrt{3},0)} = 2$$
 and $\frac{dy}{dx}\Big|_{(x,y)=(-\sqrt{3},0)} = 2;$

thus the tangent lines at $(\pm\sqrt{3},0)$ are parallel (since they have the same slope).