Calculus MA1001－B Quiz 4

National Central University，Oct． 152019

學號： \qquad姓名： \qquad
Problem 1．（2\％）Let f be a function defined on an open interval I containing c ．Show that if f is differentiable at c ，then f is continuous at c ．
Proof．Suppose that f is differentiable at c ．Then $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)$ exists．Since $\lim _{x \rightarrow c}(x-c)=0$ also exists，we must have

$$
\lim _{x \rightarrow c}[f(x)-f(c)]=\lim _{x \rightarrow c}\left(\frac{f(x)-f(c)}{x-c} \cdot(x-c)\right)=\left(\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}\right)\left(\lim _{x \rightarrow c}(x-c)\right)=f^{\prime}(c) \cdot 0=0
$$

thus $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}[f(x)-f(c)]+\lim _{x \rightarrow c} f(c)=f(c)$ which shows that f is continuous at c ．
Problem 2．（4\％）Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable functions．Show that if $y=f(u)$ and $u=g(x)$ ，then

$$
\frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d u^{2}}\left(\frac{d u}{d x}\right)^{2}+\frac{d y}{d u} \frac{d^{2} u}{d x^{2}} .
$$

Proof．By the chain rule，

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} ;
$$

thus the product rule further implies that

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d u} \frac{d u}{d x}\right)=\left(\frac{d}{d x} \frac{d y}{d u}\right) \frac{d u}{d x}+\frac{d y}{d u}\left(\frac{d}{d x} \frac{d u}{d x}\right)=\left(\frac{d^{2} y}{d u^{2}} \frac{d u}{d x}\right) \frac{d u}{d x}+\frac{d y}{d u} \frac{d^{2} u}{d x^{2}} \\
& =\frac{d^{2} y}{d u^{2}}\left(\frac{d u}{d x}\right)^{2}+\frac{d y}{d u} \frac{d^{2} u}{d x^{2}} .
\end{aligned}
$$

Problem 3．（4\％）The equation $x^{2}-x y+y^{2}=3$ represents a＂rotated ellipse＂；that is，an ellipse whose axes are not parallel to the coordinate axes．Find the points at which this ellipse crosses the x－axis and show that the tangent lines at these points are parallel．

Solution．First we solves for the x－intercepts of the ellipse．Suppose that the ellipse crosses the x－axis at $(x, 0)$ ．Then

$$
x^{2}-x \cdot 0+0^{2}=3
$$

which shows that the ellipse crosses the x－axis at $(\pm \sqrt{3}, 0)$ ．By implicit differentiation，the slope $\frac{d y}{d x}$ of the tangent line of the ellipse at (x, y) satisfies that

$$
2 x-y-x \frac{d y}{d x}+2 y \frac{d y}{d x}=0
$$

which implies that $\frac{d y}{d x}=\frac{2 x-y}{x-2 y}$ if $x \neq 2 y$ ．In particular，

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(\sqrt{3}, 0)}=2 \quad \text { and }\left.\quad \frac{d y}{d x}\right|_{(x, y)=(-\sqrt{3}, 0)}=2 ;
$$

thus the tangent lines at $(\pm \sqrt{3}, 0)$ are parallel（since they have the same slope）．

