Calculus MA1001－B Quiz 3

National Central University，Oct． 82019
學號： \qquad姓名： \qquad
Problem 1．(2%) Let f be a function defined on an open interval I ，and $c \in I$ ．State the definition of the differentiability（可微性）of f at c ．
Solution．f is said to be differentiable at c if the limit $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists．
Problem 2．(3%) Use the definition of differentiability of a function to find the derivative of $y=x^{\frac{1}{3}}$ ．
Solution．For $x \neq 0$ and $h \neq 0$ ，

$$
\frac{(x+h)^{\frac{1}{3}}-x^{\frac{1}{3}}}{h}=\frac{(x+h)^{\frac{3}{3}}-x^{\frac{3}{3}}}{h\left[(x+h)^{\frac{2}{3}}+(x+h)^{\frac{1}{3}} x^{\frac{1}{3}}+x^{\frac{2}{3}}\right]}=\frac{1}{(x+h)^{\frac{2}{3}}+(x+h)^{\frac{1}{3}} x^{\frac{1}{3}}+x^{\frac{2}{3}}} .
$$

Therefore，if $x \neq 0$ ，

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{\frac{1}{3}}-x^{\frac{1}{3}}}{h}=\lim _{h \rightarrow 0} \frac{1}{(x+h)^{\frac{2}{3}}+(x+h)^{\frac{1}{3}} x^{\frac{1}{3}}+x^{\frac{2}{3}}}=\frac{1}{3} x^{-\frac{2}{3}} .
$$

On the other hand， $\lim _{h \rightarrow 0} \frac{(0+h)^{\frac{1}{3}}-0^{\frac{1}{3}}}{h}=\lim _{h \rightarrow 0} h^{-\frac{2}{3}}$ does not exist，we conclude that

$$
\left.\frac{d}{d x}\right|_{x=c} x^{\frac{1}{3}}=\left\{\begin{array}{cl}
\frac{1}{3} c^{-\frac{2}{3}} & \text { if } c \neq 0 \\
\text { D.N.E. } & \text { if } c=0
\end{array}\right.
$$

Problem 3．（5\％）Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function，and

$$
f(\tan x)=\frac{\sin (4 x)}{x^{2}+1} \quad \forall x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) .
$$

Find $f^{\prime}(1)$ ．
Solution．Since f is differentiable on \mathbb{R} and tan is differentiable on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ，by the chain rule we find that the function $y=f(\tan x)$ is differentiable on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ，and

$$
\frac{d}{d x} f(\tan x)=f^{\prime}(\tan x) \sec ^{2} x \quad \forall x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

On the other hand，since $f(\tan x)=\frac{\sin (4 x)}{x^{2}+1}$ and

$$
\frac{d}{d x} \frac{\sin (4 x)}{x^{2}+1}=\frac{4\left(x^{2}+1\right) \cos (4 x)-2 x \sin (4 x)}{\left(x^{2}+1\right)^{2}}
$$

we find that

$$
f^{\prime}(\tan x) \sec ^{2} x=\frac{4\left(x^{2}+1\right) \cos (4 x)-2 x \sin (4 x)}{\left(x^{2}+1\right)^{2}} \quad \forall x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) .
$$

In particular，for $x=\frac{\pi}{4}$ ，we find that

$$
f^{\prime}(1) \cdot(\sqrt{2})^{2}=\frac{4\left(\frac{\pi^{2}}{16}+1\right) \cos \pi-2 \cdot \frac{\pi}{4} \sin \pi}{\left(\frac{\pi^{2}}{16}+1\right)^{2}}=\frac{-64}{\pi^{2}+16}
$$

thus $f^{\prime}(1)=\frac{-32}{\pi^{2}+16}$ ．

