Calculus MA1001－B Quiz 1

National Central University，Sept． 242019
學號： \qquad姓名： \qquad
Problem 1．（4\％）Let f be a function defined on an open interval containing c（except possibly at c）．State the definition of $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c^{-}} f(x)=L$ ．Do NOT use logic symbols．
Solution．1． $\lim _{x \rightarrow c} f(x)=L$ if for every $\varepsilon>0$ ，there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta .
$$

2． $\lim _{x \rightarrow c^{-}} f(x)=L$ if for every $\varepsilon>0$ ，there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad c-\delta<x<c
$$

Problem 2．（3\％）Find the limit $\lim _{x \rightarrow 0} x \sqrt{1+\frac{1}{x^{2}}}$ ．
Solution．For $x \neq 0, x \sqrt{1+\frac{1}{x^{2}}}=x \sqrt{\frac{1+x^{2}}{x^{2}}}=x \frac{\sqrt{1+x^{2}}}{\sqrt{x^{2}}}=\frac{x}{|x|} \sqrt{1+x^{2}}$ ．Therefore，

$$
\lim _{x \rightarrow 0^{+}} x \sqrt{1+\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{x}{x} \sqrt{1+x^{2}}=\lim _{x \rightarrow 0^{+}} \sqrt{1+x^{2}}=1
$$

and

$$
\lim _{x \rightarrow 0^{-}} x \sqrt{1+\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{-}} \frac{x}{-x} \sqrt{1+x^{2}}=-\lim _{x \rightarrow 0^{-}} \sqrt{1+x^{2}}=-1
$$

Since $\lim _{x \rightarrow 0^{+}} x \sqrt{1+\frac{1}{x^{2}}} \neq \lim _{x \rightarrow 0^{-}} x \sqrt{1+\frac{1}{x^{2}}}$ ，we find that $\lim _{x \rightarrow 0} x \sqrt{1+\frac{1}{x^{2}}}$ D．N．E．
Problem 3．（3\％）Let $-\frac{\pi}{2}<c<\frac{\pi}{2}$ ．Find the limit $\lim _{x \rightarrow c} \frac{\tan x-\tan c}{x-c}$ using the identities

$$
\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y} \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Solution．Using the identity above，

$$
\tan x-\tan c=(1+\tan x \tan c) \tan (x-c) \quad \forall-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

thus

$$
\frac{\tan x-\tan c}{x-c}=\frac{\sin (x-c)}{x-c} \frac{1+\tan x \tan c}{\cos (x-c)} \quad \forall x \neq c \text { and }-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

Using the identity $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ ，we find that

$$
\lim _{x \rightarrow c} \frac{\sin (x-c)}{x-c}=1
$$

Therefore，by the fact that $\lim _{x \rightarrow 0} \frac{1+\tan x \tan c}{\cos (x-c)}=1+\tan ^{2} c=\sec ^{2} c$ ，we find that

$$
\lim _{x \rightarrow c} \frac{\tan x-\tan c}{x-c}=\left(\lim _{x \rightarrow c} \frac{\sin (x-c)}{x-c}\right)\left(\lim _{x \rightarrow c} \frac{1+\tan x \tan c}{\cos (x-c)}\right)=\sec ^{2} c .
$$

