Exercise Problem Sets 8

Nov. 8. 2019

Problem 1. In class we have talked about how to prove the following theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function. If f is Riemann integrable on $[a, b]$, then f is bounded on $[a, b]$; that is, there exists $M>0$ such that

$$
|f(x)| \leqslant M \quad \text { whenever } \quad x \in[a, b] .
$$

Read the following proof again and try to prove this theorem directly (that is, without proving by contradiction or by contrapositive/contraposition).

Proof. Let f be Riemann integrable on $[a, b]$. Then there exists $A \in \mathbb{R}$ and $\delta>0$ such that if \mathcal{P} is a partition of $[a, b]$ satisfying $\|\mathcal{P}\|<\delta$, then any Riemann sum of f for \mathcal{P} belongs to $(A-1, A+1)$. Choose $n \in \mathbb{N}$ so that $\frac{b-a}{n}<\delta$. Then the regular partition $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$, where $x_{i}=a+\frac{b-a}{n} i$, satisfies $\|\mathcal{P}\|<\delta$.

Suppose the contrary that f is not bounded. Then there exists $x^{*} \in[a, b]$ such that

$$
\left|f\left(x^{*}\right)\right|>\frac{n(|A|+1)}{b-a}+\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right| .
$$

Suppose that $x^{*} \in\left[x_{k-1}, x_{k}\right]$. By the fact that $\sum_{\substack{i=1 \\ i \neq k}}^{n} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)+f\left(x^{*}\right)\left(x_{k}-x_{k-1}\right)$ is a Riemann sum of f for \mathcal{P}, we have

$$
A-1<\sum_{\substack{i=1 \\ i \neq k}}^{n} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)+f\left(x^{*}\right)\left(x_{k}-x_{k-1}\right)<A+1
$$

Since $x_{i}-x_{i-1}=\frac{b-1}{n}$ for all $1 \leqslant i \leqslant n$, the inequality above shows that

$$
\frac{n(A-1)}{b-a}-\sum_{\substack{i=1 \\ i \neq k}}^{n} f\left(x_{i}\right)<f\left(x^{*}\right)<\frac{n(A+1)}{b-a}-\sum_{\substack{i=1 \\ i \neq k}}^{n} f\left(x_{i}\right)
$$

and the triangle inequality further implies that

$$
-\left[\frac{n(|A|+1)}{b-a}+\sum_{\substack{i=1 \\ i \neq k}}^{n}\left|f\left(x_{i}\right)\right|\right]<f\left(x^{*}\right)<\frac{n(|A|+1)}{b-a}+\sum_{\substack{i=1 \\ i \neq k}}^{n}\left|f\left(x_{i}\right)\right| .
$$

Therefore, we conclude that

$$
\left|f\left(x^{*}\right)\right|<\frac{n(|A|+1)}{b-a}+\sum_{\substack{i=1 \\ i \neq k}}^{n}\left|f\left(x_{i}\right)\right| \leqslant \frac{n(|A|+1)}{b-a}+\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right|,
$$

a contradiction.

Problem 2. Recall that in Exercise 4 Problem 5 we have "shown" that there exists a number $e>1$ such that

$$
\frac{d}{d x} \log _{e} x=\frac{1}{x} \quad \forall x>0 .
$$

In this example you need to compute $\int_{1}^{b} \log _{e} x d x$ by the following steps.
(a) Partition $[1, b]$ into n sub-intervals by $x_{i}=r^{i}$, where $1 \leqslant i \leqslant n$ and $r=b^{\frac{1}{n}}$. Show that the Riemann sum given by the right end-point rule is

$$
(r-1) \log _{e} r \sum_{i=1}^{n} i r^{i-1}
$$

(b) Use (\diamond) and the formula in Problem 4 of Exercise 4 to simplify the Riemann sum given above and show that the Riemann sum is

$$
\frac{n b r-n b-b+1}{n(r-1)} \log _{e} b=\left[b-\frac{b-1}{n(r-1)}\right] \log _{e} b .
$$

(c) Pass the Riemann sum above to the limit as $n \rightarrow \infty$ to show that

$$
\int_{1}^{b} \log _{e} x d x=b \log _{e} b-b+1
$$

(d) Verify that $f(x)=x \log _{e} x-x$ is an anti-derivative of $y=\log _{e} x$.

Problem 3. Use Problem 2 in Exercise 5 to find the integral $\int_{1}^{\sqrt{3}} \frac{1}{x^{2}+1} d x$.
Problem 4. Find an anti-derivative of the function $y=x \sin x$ (using Riemann sums).
Hint: See Problem 4 in Exercise 7 for reference.

