Exercise Problem Sets 3

Problem 1. Let I be an open interval in $\mathbb{R}, c \in I$, and $f: I \rightarrow \mathbb{R}$ be a function. Show that f is continuous at c if and only if $\lim _{h \rightarrow 0} f(c+h)=f(c)$.
Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $f(a+b)=f(a) f(b)$ for all $a, b \in \mathbb{R}$.

1. Show that $f(x) \geqslant 0$ for all $x \in \mathbb{R}$.
2. Show that if f is continuous at 0 , then f is continuous on \mathbb{R} (that is, f is continuous at every point of \mathbb{R}).

Problem 3. Let I be an interval in \mathbb{R} and $f, g: I \rightarrow \mathbb{R}$ be continuous functions. Show that if $f(x)=g(x)$ for all $x \in \mathbb{Q} \cap I$, then $f(x)=g(x)$ for all $x \in I$.

Problem 4. Let I be an interval, $c \in I$, and $f: I \rightarrow \mathbb{R}$ be a continuous function. Show that if $f(c) \neq 0$, there exists $\delta>0$ such that $f(x) f(c)>0$ whenever $|x-c|<\delta$ and $x \in I$.

Problem 5. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ so that f is continuous at all integers but nowhere else.

Problem 6. Find the following limits:

1. $\lim _{x \rightarrow-\infty}\left(2 x+\sqrt{4 x^{2}+3 x-2}\right)$.
2. $\lim _{x \rightarrow \infty}\left(x-\sqrt[3]{x^{3}+2 x-3}\right)$.
3. $\lim _{x \rightarrow \infty} \frac{\llbracket x \rrbracket}{x}$, where $\llbracket \rrbracket$ is the floor function.

Problem 7. Show that the equation $x^{3}-15 x+1=0$ has three solutions in the interval $[-4,4]$.
Problem 8. Suppose that a and b are positive constants. Show that the equation

$$
\frac{a}{x^{3}+2 x^{2}-1}+\frac{b}{x^{3}+x-2}=0
$$

has at least one solution in the interval $(-1,1)$.
Problem 9. True or False: Determine whether the following statements are true or false. If it is true, prove it. Otherwise, give a counter-example.

1. If $|f|$ is continuous at c, so is f.
2. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a continuous function. If $f(x) \neq 0$ for all $x \in I$, then f never change signs; that is, either $f(x)>0$ for all $x \in I$ or $f(x)<0$ for all $x \in I$.
3. If $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c}[f(x)-g(x)]=0$, then $\lim _{x \rightarrow c} g(x)=\infty$.
