Exercise Problem Sets 11

Nov. 29. 2019

Problem 1. Show that the following functions are decreasing on $(0, \infty)$.

1. $y = \left(1 + \frac{1}{2x}\right)^{x+0.5}$. 2. $y = \left(1 + \frac{1}{x}\right)^{x+0.5}$.

Problem 2. In this example you are asked to compute the integral of $y = xe^x$ by the Riemann sum. Complete the following.

- 1. Show that if $r \neq 1$, then $\sum_{k=1}^{n} kr^k = \frac{r(1-r^n)}{(1-r)^2} \frac{nr^{n+1}}{1-r}$.
- 2. Compute $\int_0^a xe^x dx$ by the limit the Riemann sum of $y = xe^x$ for regular partition using the right end-point rule.
- 3. Find an anti-derivative of $y = xe^x$.

Problem 3 (Integrating Factor).

1. Let $f, g : [a, b] \to \mathbb{R}$ be a continuous function, F be an anti-derivative of f, and $y : [a, b] \to \mathbb{R}$ satisfies that

$$y' + f(x)y = g(x). \tag{(\star)}$$

Find an expression of y.

2. Find the function y satisfying $y' + x^2y = 2x^3$ and y(0) = 1.

Hint: Multiply both sides of (\star) by $\exp(F(x))$ and observe that the left-hand side is the derivative of a certain function.

Problem 4. 1. Show that for 0 < a < b,

2. Using the result above to show that for 0 < a < b,

$$\sqrt{ab} < \frac{b-a}{\ln b - \ln a} < \frac{a+b}{2}.$$

Problem 5. Prove the following inequalities.

- 1. $e^x > 1 + \ln(1+x)$ for all x > 0.
- 2. $e^x > 1 + (1+x)\ln(1+x)$ for all x > 0.
- 3. $e^x \ge 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$ for all $x \ge 0$ and $n \in \mathbb{N}$.

Problem 6. Let a, b be two positive numbers, p, q any nonzero numbers, and p < q. Prove that

$$\left[\theta a^p + (1-\theta)b^p\right]^{\frac{1}{p}} \leq \left[\theta a^q + (1-\theta)b^q\right]^{\frac{1}{q}} \qquad \forall \theta \in (0,1).$$

Hint: Show that the function $f(p) = \left[\theta a^p + (1-\theta)b^p\right]^{\frac{1}{p}}$ is an increasing function of p.

Problem 7. 1. Find an equation for the line through the origin tangent to the graph of $y = \ln x$.

- 2. Show that $\ln x < \frac{x}{e}$ for all $x \neq e$.
- 3. Show that $x^e < e^x$ for all $x \neq e$.
- 4. Show that if $e \leq A < B$, then $A^B > B^A$.

Problem 8 (Implicit Differentiation).

- 1. Find y' if $e^{\frac{x}{y}} = x y$.
- 2. Find an equation of the tangent line to the curve $xe^y + ye^x = 1$ at the point (0, 1).
- 3. Find an equation of the tangent line to the curve $1 + \ln xy = e^{x-y}$ at the point (1, 1)