Exercise Problem Sets 11

Problem 1. Show that the following functions are decreasing on $(0, \infty)$.

1. $y=\left(1+\frac{1}{2 x}\right)^{x+0.5}$.
2. $y=\left(1+\frac{1}{x}\right)^{x+0.5}$.

Problem 2. In this example you are asked to compute the integral of $y=x e^{x}$ by the Riemann sum. Complete the following.

1. Show that if $r \neq 1$, then $\sum_{k=1}^{n} k r^{k}=\frac{r\left(1-r^{n}\right)}{(1-r)^{2}}-\frac{n r^{n+1}}{1-r}$.
2. Compute $\int_{0}^{a} x e^{x} d x$ by the limit the Riemann sum of $y=x e^{x}$ for regular partition using the right end-point rule.
3. Find an anti-derivative of $y=x e^{x}$.

Problem 3 (Integrating Factor).

1. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be a continuous function, F be an anti-derivative of f, and $y:[a, b] \rightarrow \mathbb{R}$ satisfies that

$$
y^{\prime}+f(x) y=g(x) .
$$

Find an expression of y.
2. Find the function y satisfying $y^{\prime}+x^{2} y=2 x^{3}$ and $y(0)=1$.

Hint: Multiply both sides of (\star) by $\exp (F(x))$ and observe that the left-hand side is the derivative of a certain function.

Problem 4. 1. Show that for $0<a<b$,

$$
e^{\frac{\ln a+\ln b}{2}} \cdot(\ln b-\ln a)<\int_{\ln a}^{\ln b} e^{x} d x<\frac{e^{\ln a}+e^{\ln b}}{2} \cdot(\ln b-\ln a) .
$$

2. Using the result above to show that for $0<a<b$,

$$
\sqrt{a b}<\frac{b-a}{\ln b-\ln a}<\frac{a+b}{2} .
$$

Problem 5. Prove the following inequalities.

1. $e^{x}>1+\ln (1+x)$ for all $x>0$.
2. $e^{x}>1+(1+x) \ln (1+x)$ for all $x>0$.
3. $e^{x} \geqslant 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}$ for all $x \geqslant 0$ and $n \in \mathbb{N}$.

Problem 6. Let a, b be two positive numbers, p, q any nonzero numbers, and $p<q$. Prove that

$$
\left[\theta a^{p}+(1-\theta) b^{p}\right]^{\frac{1}{p}} \leqslant\left[\theta a^{q}+(1-\theta) b^{q}\right]^{\frac{1}{q}} \quad \forall \theta \in(0,1) .
$$

Hint: Show that the function $f(p)=\left[\theta a^{p}+(1-\theta) b^{p}\right]^{\frac{1}{p}}$ is an increasing function of p.
Problem 7. 1. Find an equation for the line through the origin tangent to the graph of $y=\ln x$.
2. Show that $\ln x<\frac{x}{e}$ for all $x \neq e$.
3. Show that $x^{e}<e^{x}$ for all $x \neq e$.
4. Show that if $e \leqslant A<B$, then $A^{B}>B^{A}$.

Problem 8 (Implicit Differentiation).

1. Find y^{\prime} if $e^{\frac{x}{y}}=x-y$.
2. Find an equation of the tangent line to the curve $x e^{y}+y e^{x}=1$ at the point $(0,1)$.
3. Find an equation of the tangent line to the curve $1+\ln x y=e^{x-y}$ at the point $(1,1)$
