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For a double integral
ĳ

R

f(x, y) dA which can be computed by the iterated integral
ż ( ż

f(x, y)dy
)
dx, with a one-to-one change of variables x = x(u, v) and y = y(u, v), we

obtain that
ĳ

R

f(x, y) dA =

ĳ

R 1

f(x(u, v), y(u, v))
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xu(u, v) xv(u, v)
yv(u, v) yu(u, v)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dA 1 ,

where R 1 is a region (x, y)(R 1) = R.

For a triple integral
¡

Q

f(x, y, z) dV which can be computed by the iterated integral
ż [ ż ( ż

f(x, y, z)dz
)
dy

]
dx, with a one-to-one change of variables x = x(u, v, w), y =

y(u, v, w) and z = z(u, v, w), we obtain that
¡

Q

f(x, y, z) dV

=

¡

Q 1

f(x(u, v, w), y(u, v, w), z(u, v, w))
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xu(u, v, w) xv(u, v, w) xw(u, v, w)
yu(u, v, w) yv(u, v, w) yw(u, v, w)
zu(u, v, w) zv(u, v, w) zw(u, v, w)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dV 1

The naive (but wrong) computations above motivate the following
Definition 14.20

If x = x(u, v) and y = y(u, v), the Jacobian of x and y with respect to u and v,

denoted by B (x, y)

B (u, v)
, is

B (x, y)

B (u, v)
=

ˇ

ˇ

ˇ

ˇ

xu xv

yu yv

ˇ

ˇ

ˇ

ˇ

= xuyv ´ xvyu .

If x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w), the Jacobian of x, y and z with

respect to u, v and w, denoted by B (x, y, z)

B (u, v, w)
, is

B (x, y, z)

B (u, v, w)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xu xv xw

yu yv yw
zu zv zw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= xuyvzw + xwyuzv + xvywzu ´ xwyvzu ´ xvyuzw ´ xuywzv .

In general, if g1, g2, ¨ ¨ ¨ , gn are functions of n-variables (whose variables are denoted by

u1, u2, ¨ ¨ ¨ , un), then the Jacobian of g1, g2, ¨ ¨ ¨ , gn (with respect to u1, u2, ¨ ¨ ¨ , un), denoted

by B (g1, ¨ ¨ ¨ , gn)

B (u1, ¨ ¨ ¨ , un)
, is



B (g1, ¨ ¨ ¨ , gn)

B (u1, ¨ ¨ ¨ , un)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bg1
Bu1

Bg1
Bu2

¨ ¨ ¨
Bg1
Bun

Bg2
Bu1

Bg2
Bu2

¨ ¨ ¨
Bg2
Bun

... ... . . . ...
Bgn
Bu1

Bgn
Bu2

¨ ¨ ¨
Bgn
Bun

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Example 14.21. The Jacobian of the change of variables given by the spherical coordinate
x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ is

B (x, y, z)

B (ρ, θ, ϕ)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ sinϕ ´ρ sin θ sinϕ ρ cos θ cosϕ
sin θ sinϕ ρ cos θ sinϕ ρ sin θ cosϕ

cosϕ 0 ´ρ sinϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´ρ2 cos2 θ sin3 ϕ ´ ρ2 sin2 θ sinϕ cos2 ϕ ´ ρ2 cos2 θ sinϕ cos2 ϕ ´ ρ2 sin2 θ sin3 ϕ

= ´ρ2 cos2 θ sinϕ ´ ρ2 sin2 θ sinϕ = ´ρ2 sinϕ .

The Jacobian of the change of variables given by the cylindrical coordinate x = r cos θ,
y = r sin θ, z = z is

B (x, y, z)

B (r, θ, z)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ ´r sin θ 0
sin θ r cos θ 0
0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= r .

Even though the derivation of the change of variables is wrong; however, the conclusion
is in fact correct, and we have the following

Theorem 14.22
Let O Ď R2 be an open set that has area, and g = (g1, g2) : O Ñ R2 be an one-to-one
continuously differentiable function such that g´1 is also continuously differentiable.
Assume that the Jacobian of g1, g2 (with respective to their variables) does not vanish
in O. If f : g(O) Ñ R is integrable (on g(O)), then

ĳ

g(O)

f(x, y) dA =

ĳ

O

f
(
g1(u, v), g2(u, v)

)ˇ
ˇ

ˇ

B (g1, g2)

B (u, v)

ˇ

ˇ

ˇ
dA 1 ,

where the integral on the right-hand side is the double integral of the function

f
(
g1(u, v), g2(u, v)

)ˇ
ˇ

ˇ

B (g1, g2)

B (u, v)

ˇ

ˇ

ˇ
(with variables u, v) on O.



Theorem 14.23
Let O Ď R3 be an open set that has volume (that is, the constant function is Rie-
mann integrable on O), and g = (g1, g2, g3) : O Ñ R3 be an one-to-one continuously
differentiable function such that g´1 is also continuously differentiable. Assume that
the Jacobian of g1, g2, g3 (with respective to their variables) does not vanish in O. If
f : g(O) Ñ R is integrable (on g(O)), then

¡

g(O)

f(x, y, z) dV =

¡

O

f
(
g1(u, v, w), g2(u, v, w), g3(u, v, w)

)ˇ
ˇ

ˇ

B (g1, g2, g3)

B (u, v, w)

ˇ

ˇ

ˇ
dV 1 ,

where the integral on the right-hand side is the triple integral of the function

f
(
g1(u, v, w), g2(u, v, w), g3(u, v, w)

)ˇ
ˇ

ˇ

B (g1, g2, g3)

B (u, v, w)

ˇ

ˇ

ˇ
(with variables u, v, w) on O.

Remark 14.24. Suppose that O is an open set in the plane such that the boundary of
O, denoted by BO, has zero area. Under suitable assumptions (for example, if the set of
discontinuities of f has zero area and f is bounded above or below by a constant), we have

ĳ

O

f(x, y) dA =

ĳ

sO

f(x, y) dA . (14.5.1)

Example 14.25. Let B =
␣

(x, y)
ˇ

ˇx2 + y2 ă R2
(

´ [0, 1) ˆ t0u. Then the polar coordinate
x = x(r, θ) = r cos θ and y = y(r, θ) = r cos θ is an one-to-one continuously differentiable
function from O ” (0, R) ˆ (0, 2π) Ñ R2 and the inverse function r = r(x, y) =

a

x2 + y2

and

θ = θ(x, y) =

$

’

’

’

’

&

’

’

’

’

%

arccos x
a

x2 + y2
if y ą 0 ,

π if y = 0 ,

2π ´ arccos x
a

x2 + y2
if y ă 0 ,

is also continuously differentiable (which you proved in Quiz). Therefore, the change of
variables formula implies that

ĳ

B

f(x, y)dA =

ĳ

(0,R)ˆ(0,2π)

f(r cos θ, r sin θ)r dA .

Let D(R) =
␣

(x, y)
ˇ

ˇx2 + y2 ď R2
(

. Then D = B Y BB and [0, R] ˆ [0, 2π] = (0, R) ˆ



(0, 2π) Y B
[
(0, R) ˆ (0, 2π)

]
; thus (14.5.1) further implies that

ĳ

D(R)

f(x, y) dA =

ĳ

[0,R]ˆ[0,2π]

f(r cos θ, r sin θ)r dA .

In general, if a region R, in polar coordinate, can be expressed as

R 1 =
␣

(r, θ)
ˇ

ˇ a ď θ ď b, g1(θ) ď r ď g2(θ)
(

,

then
ĳ

R

f(x, y) dA =

ż b

a

( ż g2(θ)

g1(θ)

f(r cos θ, r sin θ)r dr
)
dθ ,

while if R, in polar coordinate, can be expressed as

R 1 =
␣

(r, θ)
ˇ

ˇ c ď r ď d, h1(r) ď θ ď h2(r)
(

,

then
ĳ

R

f(x, y) dA =

ż d

c

( ż h2(r)

h1(r)

f(r cos θ, r sin θ)r dθ
)
dr .

Example 14.26. In this example we compute the double integral
ĳ

R

a

1 + 4x2 + 4y2 dA

that appears in Example 14.13, where R =
␣

(x, y)
ˇ

ˇx2 + y2 ď 1
(

.

Using the polar coordinate, R can be expressed as
␣

(r, θ)
ˇ

ˇ 0 ď r ď 1, 0 ď θ ď 2π
(

; thus
ĳ

R

a

1 + 4x2 + 4y2 dA =

ż 2π

0

( ż 1

0

?
1 + 4r2 ¨ r dr

)
dθ =

ż 2π

0

[ 1

12
(1 + 4r2)

3
2

]ˇ
ˇ

ˇ

r=1

r=0
dθ

=
1

12

ż 2π

0

(5
?
5 ´ 1) dθ =

π

6
(5

?
5 ´ 1) .

Example 14.27. Let S be the subset of the upper hemisphere z =
a

1 ´ x2 ´ y2 enclosed
by the curve C shown in the figure below

Figure 14.5: Curve S on the upper hemisphere



where each point of C corresponds to some point (cos t sin t, sin2 t, cos t) with t P
[
´

π

2
,
π

2

]
.

Find the surface of S.
Let (x, y) be a boundary point of R. The (x, y) = (cos t sin t, sin2 t) for some t P

[
´

π

2
,
π

2

]
;

thus
x2 + y2 = cos2 t sin2 t+ sin4 t = (cos2 t+ sin2 t) sin2 t = sin2 t = y .

Therefore, the boundary of R consists of points (x, y) satisfying x2 + y2 = y which shows
that R is a disk centered at

(
0,

1

2

)
with radius 1

2
. Therefore,

R =
␣

(x, y)
ˇ

ˇ 0 ď y ď 1,´
a

y ´ y2 ď x ď
a

y ´ y2
(

,

and by Theorem ?? the surface area of S is given by
ĳ

R

1
a

1 ´ x2 ´ y2
dA.

Now we apply the change of variables using the polar coordinates to compute this double
integral. Since we have found the Jacobian of this change of variables, we only need to find
the corresponding region R 1 of R in the rθ-plane and the change of variables formula shows
that the surface area of S is

ĳ

R 1

r
?
1 ´ r2

dA 1.

By the fact that the boundary of R 1 maps to the boundary of R under the change
of variables x = r cos θ and y = r sin θ, we find that if (r, θ) is a boundary point of R 1,
then (r, θ) satisfies r2 = r sin θ ; thus the boundary of R 1 consists of points (r, θ) satisfying
r = sin θ or r = 0 in the rθ-plane. Since R locates on the upper half plane, 0 ď θ ď π, and
the center of the disk R corresponds to point

(1
2
,
π

2

)
in the rθ-plane, we conclude that

R 1 =
␣

(r, θ)
ˇ

ˇ 0 ď θ ď π, 0 ď r ď sin θ
(

.

Therefore,
ĳ

R 1

r
?
1 ´ r2

dA 1 =

ż π

0

( ż sin θ

0

1
?
1 ´ r2

rdr
)
dθ =

ż π

0

[(
´

?
1 ´ r2

)ˇ
ˇ

ˇ

r=sin θ

r=0

]
dθ

=

ż π

0

(
1 ´ | cos θ|

)
dθ = π ´ 2

ż π
2

0

cos θ dθ = π ´ 2
(

sin θ
ˇ

ˇ

ˇ

θ=π
2

θ=0

)
= π ´ 2 .

Example 14.28. In this example we compute the improper integral
ż 8

0
e´x2

dx. First

we note that this improper integral converges since 0 ď e´x2
ď e´x for all x ě 1 and

ż 8

1
e´x dx = e´1 ă 8, the comparison test implies that

ż 8

1
e´x2

dx converges.



Let I =
ż 8

0
e´x2

dx. Then I =
ż 8

0
e´y2 dy; thus

I2 =
( ż 8

0

e´x2

dx
)( ż 8

0

e´y2 dy
)
=

ż 8

0

( ż 8

0

e´y2 dy
)
e´x2

dx

=

ż 8

0

( ż 8

0

e´x2

e´y2 dy
)
dx =

ż 8

0

( ż 8

0

e´(x2+y2) dy
)
dx =

ĳ

R

e´(x2+y2) dA ,

where R is the first quadrant of the plane. In polar coordinate, the first quadrant can be
expressed as 0 ă r ă 8 and 0 ă θ ă

π

2
; thus using the polar coordinate we find that

I2 =

ż π
2

0

( ż 8

0

e´r2r dr
)
dθ =

ż π
2

0

(
´
1

2
e´r2

)ˇ
ˇ

ˇ

r=8

r=0
dθ =

π

4
.

By the fact that I ě 0, we conclude that I =

?
π

2
.

Example 14.29. In this example we reconsider the volume of the solid region Q in Example
14.16, where

Q =
␣

(x, y, z)
ˇ

ˇ (x, y) P R, x2 + y2 ď z ď
a

6 ´ x2 ´ y2
(

,

and R is a disk centered at the origin with radius
?
2.

Using the cylindrical coordinate, the region Q can be expressed as
␣

(r, θ, z)
ˇ

ˇ 0 ď r ď
?
2, 0 ď θ ď 2π, r2 ď z ď

?
6 ´ r2

(

.

Therefore, the volume of Q is given by
¡

Q

dV =

ż 2π

0

[ ż ?
2

0

( ż ?
6´r2

r2
r dz

)
dr
]
dθ =

ż 2π

0

[ ż ?
2

0

r
(?

6 ´ r2 ´ r2
)
dr
]
dθ

=

ż 2π

0

[
´
1

3
(6 ´ r2)

3
2 ´

1

4
r4
]ˇ
ˇ

ˇ

r=
?
2

r=0
dθ =

ż 2π

0

(
´

8

3
´ 1 + 2

?
6
)
dθ = 2π

(
2
?
6 ´

11

3

)
.

Example 14.30. Find the double integral
ĳ

R

e´
xy
2 dA, where R is the region given in the

following figure.



Consider the following change of variables: x =
b

v

u
and y =

?
uv. In order to apply

the change of variables formula to find the double integral, we need to know

1. What is the Jacobian of this change of variable?

2. What is the corresponding region of integration in the uv-plane?

We first note that for the change of variables to make sense, u, v have the same sign.
W.L.O.G., we assume that the corresponding region in the uv-plane lies in the first quadrant.
We compute the Jacobian and find that

B (x, y)

B (u, v)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2

b

u

v
¨

´v

u2
1

2

b

u

v
¨
1

u
1

2

v
?
uv

1

2

u
?
uv

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
1

4
¨

´1

u
´

1

4
¨
1

u
= ´

1

2u
.

Now we find the corresponding region R 1 in the uv-plane. The rule of thumb is that a
one-to-one continuously differentiable function whose Jacobian does not vanish maps the
boundary of a region to the boundary of its image. Therefore, the boundary of R 1 is given
by u =

1

2
, u = 2 and v = 1, v = 4. Since the point (x, y) satisfying xy = 2 and y

x
= 1

corresponds to u = 1 and v = 2, we find that R 1 =
[1
2
, 2
]

ˆ [1, 4]. Therefore, the change of
variable formula implies that

ĳ

R

e´
xy
2 dA =

ĳ

[ 1
2
,2]ˆ[1,4]

e´ v
2
1

2u
dA 1 =

ż 2

1
2

( ż 4

1

e´ v
2

2u
dv

)
du

=

ż 2

1
2

[(
´e´ v

2

u

)ˇ
ˇ

ˇ

v=4

v=1

]
du =

(
e´ 1

2 ´ e´2
) ż 2

1
2

1

u
du = 3 ln 2

(
e´ 1

2 ´ e´2
)
.

A more fundamental question is: why do we choose this change of coordinate? The
general philosophy is to “straighten” the boundary so that in the new coordinate system
the corresponding region becomes a region bounded by straight lines. Observing that the
boundaries of the region R consists of four curves y

x
=

1

4
, y

x
= 2, xy = 1 and xy = 4, it is

quite intuitive that we choose u =
y

x
and v = xy as our change of variables (in a reverse

order). Solving for x, y in terms of u, v, we find that x =
b

v

u
and y =

?
uv.


