微積分 MA1002－A 上課筆記（精簡版） 2019．06．06．

Let Q be a bounded region in the space, and $f: Q \rightarrow \mathbb{R}$ be a non-negative function which described the point density of the region. We are interested in the mass of Q.

We start with the simple case that $Q=[a, b] \times[c, d] \times[r, s]$ is a cube. Let

$$
\begin{aligned}
& \mathcal{P}_{x}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}, \\
& \mathcal{P}_{y}=\left\{c=y_{0}<y_{1}<\cdots<y_{m}=d\right\}, \\
& \mathcal{P}_{z}=\left\{r=z_{0}<z_{1}<\cdots<z_{p}=s\right\},
\end{aligned}
$$

be partitions of $[a, b],[c, d],[r, s]$, respectively, and \mathcal{P} be a collection of non-overlapping cubes given by

$$
\mathcal{P}=\left\{R_{i j k} \mid R_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{k-1}, z_{k}\right], 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m, 1 \leqslant k \leqslant p\right\} .
$$

Such a collection \mathcal{P} is called a partition of Q, and the norm of \mathcal{P} is the maximum of the length of the diagonals of all $R_{i j k}$; that is

$$
\|\mathcal{P}\|=\max \left\{\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{j}-y_{j-1}\right)^{2}+\left(z_{k}-z_{k-1}\right)^{2}} \mid 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m, 1 \leqslant k \leqslant p\right\}
$$

A Riemann sum of f for this partition \mathcal{P} is given by

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{p} f\left(\xi_{i j k}, \eta_{i j k}, \zeta_{i j k}\right)\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)\left(z_{k}-z_{k-1}\right),
$$

where $\left\{\left(\xi_{i j k}, \eta_{i j k}, \zeta_{i j k}\right)\right\}_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m, 1 \leqslant k \leqslant p}$ is a collection of points satisfying $\left(\xi_{i j k}, \eta_{i j k}, \zeta_{i j k}\right) \in$ $Q_{i j k}$ for all $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$ and $1 \leqslant k \leqslant p$. The mass of Q then should be the "limit" of Riemann sums as $\|\mathcal{P}\|$ approaches zero. In general, we can remove the restrictions that f is non-negative on R and still consider the limit of the Riemann sums. We have the following

Theorem 14.14

Let $Q=[a, b] \times[c, d] \times[r, s]$ be a cube in the space, and $f: Q \rightarrow \mathbb{R}$ be a function. f is said to be Riemann integrable on Q if there exists a real number I such that for every $\varepsilon>0$, there exists $\delta>0$ such that if \mathcal{P} is a partition of Q satisfying $\|\mathcal{P}\|<\delta$, then any Riemann sum of f for \mathcal{P} belongs to $(I-\varepsilon, I+\epsilon$). Such a number I (is unique if it exists and) is called the Riemann integral or triple integral of f on Q and is denoted by $\iiint_{Q} f(x, y, z) d V$.

For general bounded region Q in the space, let $r>0$ be such that $Q \subseteq[-r, r]^{3}$, and we
define $\iiint_{Q} f(x, y, z) d V$ as $\iiint_{[-r, r]^{3}} \tilde{f}(x, y, z) d V$, where \tilde{f} is the zero extension of f given by

$$
\tilde{f}(x, y, z)=\left\{\begin{array}{cl}
f(x, y, z) & \text { if }(x, y, z) \in R \\
0 & \text { if }(x, y, z) \notin R .
\end{array}\right.
$$

Some of the properties of double integrals in Theorem 14.4 can be restated in terms of triple integrals.

1. $\iiint_{Q}(c f)(x, y, z) d V=c \iiint_{Q} f(x, y, z) d V$ for all Riemann integrable function f.
2. $\iiint_{Q}(f+g)(x, y, z) d V=\iiint_{Q} f(x, y, z) d V+\iiint_{Q} g(x, y, z) d V$ for all Riemann integrable functions f, g.
3. $\iiint_{Q_{1} \cup Q_{2}} f(x, y, z) d V=\iiint_{Q_{1}} f(x, y, z) d V+\iiint_{Q_{2}} f(x, y, z) d V$ for all "non-overlapping" solid regions Q_{1} and Q_{2} and Riemann integrable function f.

Similar to Fubini's Theorem for the evaluation of double integrals, we have the following

Theorem 14.15: Fubini's Theorem

Let Q be a region in the space, and $f: Q \rightarrow \mathbb{R}$ be continuous. If Q is given by $Q=\left\{(x, y, z) \mid(x, y) \in R, g_{1}(x, y) \leqslant z \leqslant g_{2}(x, y)\right\}$ for some region R in the $x y$-plane, then (f is Riemann integrable on Q and)

$$
\iiint_{Q} f(x, y, z) d V=\iint_{R}\left(\int_{g_{1}(x, y)}^{g_{2}(x, y)} f(x, y, z) d z\right) d A
$$

In particular, if R is expressed by $R=\left\{(x, y) \mid a \leqslant x \leqslant b, h_{1}(x) \leqslant y \leqslant h_{2}(y)\right\}$, then

$$
\iiint_{Q} f(x, y, z) d V=\int_{a}^{b}\left[\int_{h_{1}(x)}^{h_{2}(x)}\left(\int_{g_{1}(x, y)}^{g_{2}(x, y)} f(x, y, z) d z\right) d y\right] d x
$$

The integral which appears in the right-hand side of the last line of the theorem above is also an iterated integral.

Example 14.16. Find the volume of the region Q bounded below by the paraboloid $z=$ $x^{2}+y^{2}$ and above by the sphere $x^{2}+y^{2}+z^{2}=6$.

Suppose Q is a solid region in the space with uniform density 1 (or say, this region is occupied by water). Then the volume of Q is identical to the mass (in terms of its numerical value); thus we find that the volume of Q is given by $\iiint_{Q} 1 d V$. To apply the Fubini Theorem, we need to express Q as $\left\{(x, y, z) \mid(x, y) \in R, g_{1}(x, y) \leqslant z \leqslant g_{2}(x, y)\right\}$. Nevertheless, if R is the bounded region in the plane enclosed by the curve $\left(x^{2}+y^{2}\right)^{2}+x^{2}+y^{2}=6$ (which in fact gives $x^{2}+y^{2}=2$), then

$$
Q=\left\{(x, y, z) \mid(x, y) \in R, x^{2}+y^{2} \leqslant z \leqslant \sqrt{6-x^{2}-y^{2}}\right\}
$$

and the Fubini Theorem implies that

$$
\text { the volume of } Q=\int_{R}\left(\int_{x^{2}+y^{2}}^{\sqrt{6-x^{2}-y^{2}}} 1 d z\right) d A
$$

Solving for R, we find that $R=\left\{(x, y) \mid-\sqrt{2} \leqslant x \leqslant \sqrt{2},-\sqrt{2-x^{2}} \leqslant y \leqslant \sqrt{2-x^{2}}\right\}$; thus by the Fubini Theorem we find that

$$
\text { the volume of } Q=\int_{-\sqrt{2}}^{\sqrt{2}}\left[\int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}}\left(\int_{x^{2}+y^{2}}^{\sqrt{6-x^{2}-y^{2}}} 1 d z\right) d y\right] d x
$$

Example 14.17. Evaluate $\int_{0}^{\sqrt{\pi / 2}}\left[\int_{x}^{\sqrt{\pi / 2}}\left(\int_{1}^{3} \sin \left(y^{2}\right) d z\right) d y\right] d x$.
Let $R=\{(x, y) \mid 0 \leqslant x \leqslant \sqrt{\pi / 2}, x \leqslant y \leqslant \sqrt{\pi / 2}\}$, then the domain of integration is given by

$$
Q=\{(x, y, z) \mid 0 \leqslant x \leqslant \sqrt{\pi / 2}, x \leqslant y \leqslant \sqrt{\pi / 2}, 1 \leqslant z \leqslant 3\}
$$

and the iterated integral given above is the triple integral $\iiint_{Q} \sin \left(y^{2}\right) d V$.
Since R can also be expressed as $R=\{(x, y) \mid 0 \leqslant y \leqslant \sqrt{\pi / 2}, 0 \leqslant x \leqslant y\}$, by the Fubini Theorem we find that

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi / 2}} & {\left[\int_{x}^{\sqrt{\pi / 2}}\left(\int_{1}^{3} \sin \left(y^{2}\right) d z\right) d y\right] d x=\iiint_{Q} \sin \left(y^{2}\right) d V } \\
\quad= & \int_{0}^{\sqrt{\pi / 2}}\left[\int_{0}^{y}\left(\int_{1}^{3} \sin \left(y^{2}\right) d z\right) d x\right] d y=\int_{0}^{\sqrt{\pi / 2}} 2 y \sin \left(y^{2}\right) d y=-\left.\cos \left(y^{2}\right)\right|_{y=0} ^{y=\sqrt{\pi / 2}}=1
\end{aligned}
$$

Example 14.18. Compute the iterated integrals

$$
\int_{0}^{6}\left[\int_{\frac{z}{2}}^{3}\left(\int_{\frac{z}{2}}^{y} d x\right) d y\right] d z+\int_{0}^{6}\left[\int_{3}^{\frac{12-z}{2}}\left(\int_{\frac{z}{2}}^{6-y} d x\right) d y\right] d z
$$

then write the sum above as a single iterated integral in the order $d y d z d x$ and $d z d y d x$.
We compute the two integrals above as follows:

$$
\begin{gathered}
\int_{0}^{6}\left[\int_{\frac{z}{2}}^{3}\left(\int_{\frac{z}{2}}^{y} d x\right) d y\right] d z=\int_{0}^{6}\left[\int_{\frac{z}{2}}^{3}\left(y-\frac{z}{2}\right) d y\right] d z=\int_{0}^{6}\left(\left.\frac{y^{2}-y z}{2}\right|_{y=\frac{z}{2}} ^{y=3}\right) d z \\
\quad=\frac{1}{2} \int_{0}^{6}\left(9-3 z+\frac{z^{2}}{4}\right) d z=\left.\frac{1}{2}\left(9 z-\frac{3 z^{2}}{2}+\frac{z^{3}}{12}\right)\right|_{z=0} ^{z=6}=9
\end{gathered}
$$

and

$$
\begin{aligned}
\int_{0}^{6} & {\left[\int_{3}^{\frac{12-z}{2}}\left(\int_{\frac{z}{2}}^{6-y} d x\right) d y\right] d z=\int_{0}^{6}\left[\int_{3}^{\frac{12-z}{2}}\left(6-y-\frac{z}{2}\right) d y\right] d z } \\
& =\left.\frac{1}{2} \int_{0}^{6}\left(12 y-y^{2}-y z\right)\right|_{y=3} ^{y=\frac{12-z}{2}} d z \\
& =\frac{1}{2} \int_{0}^{6}\left[6(12-z)-\frac{144-24 z+z^{2}}{4}-\frac{(12-z) z}{2}-36+9+3 z\right) d z \\
& =\frac{1}{2} \int_{0}^{6}\left(72-6 z-36+6 z-\frac{z^{2}}{4}-6 z+\frac{z^{2}}{2}-27+3 z\right) d z \\
& =\frac{1}{2} \int_{0}^{6}\left(9-3 z+\frac{z^{2}}{4}\right) d z=\left.\frac{1}{2}\left(9 z-\frac{3 z^{2}}{2}+\frac{z^{3}}{12}\right)\right|_{z=0} ^{z=6}=9 .
\end{aligned}
$$

Therefore, the sum of the two integrals is 18 .
Let

$$
\begin{aligned}
& Q_{1}=\left\{(x, y, z) \mid 0 \leqslant z \leqslant 6, \frac{z}{2} \leqslant y \leqslant 3, \frac{z}{2} \leqslant x \leqslant y\right\}, \\
& Q_{2}=\left\{(x, y, z) \mid 0 \leqslant z \leqslant 6,3 \leqslant y \leqslant \frac{12-z}{2}, \frac{z}{2} \leqslant x \leqslant 6-y\right\} .
\end{aligned}
$$

Then the Fubini Theorem implies that

$$
\int_{0}^{6}\left[\int_{\frac{z}{2}}^{3}\left(\int_{\frac{z}{2}}^{y} d x\right) d y\right] d z=\iiint_{Q_{1}} d V, \quad \int_{0}^{6}\left[\int_{3}^{\frac{12-z}{2}}\left(\int_{\frac{z}{2}}^{6-y} d x\right) d y\right] d z=\iiint_{Q_{2}} d V
$$

Let $Q=Q_{1} \cup Q_{2}$. Since Q_{1} and Q_{2} are non-overlapping solid regions (their intersection is a subset of the plane $y=3$). Then

$$
\iiint_{Q_{1}} d V+\iiint_{Q_{2}} d V=\iiint_{Q} d V
$$

1. Let R be the projection of Q onto the $x z$-plane. Then $R=\{(x, z) \mid 0 \leqslant x \leqslant 3,0 \leqslant$ $z \leqslant 2 x\}$ (where $z=2 x$ is the projection of the plane $x=\frac{z}{2}$ onto the $x z$-plane), and Q can also be expressed as

$$
Q=\{(x, y, z) \mid(x, z) \in R, x \leqslant y \leqslant 6-x\} .
$$

Therefore, the volume of Q is given by

$$
\begin{aligned}
\int_{0}^{3} & {\left[\int_{0}^{2 x}\left(\int_{x}^{6-x} d y\right) d z\right] d x=\int_{0}^{3}\left[\int_{0}^{2 x}(6-2 x) d z\right] d x } \\
& =\int_{0}^{3} 2 x(6-2 x) d x=\left.\left(6 x^{2}-\frac{4 x^{3}}{3}\right)\right|_{x=0} ^{x=3}=54-36=18 .
\end{aligned}
$$

2. Let S be the projection of Q onto the $x y$-plane. Then $S=\{(x, y) \mid 0 \leqslant x \leqslant 3, x \leqslant$ $y \leqslant 6-x\}$, and Q can also be expressed as

$$
Q=\{(x, y, z) \mid(x, y) \in S, 0 \leqslant z \leqslant 2 x\} .
$$

Therefore, the volume of Q is given by

$$
\int_{0}^{3}\left[\int_{x}^{6-x}\left(\int_{0}^{2 x} d z\right) d y\right] d x=\int_{0}^{3}\left[\int_{x}^{6-x} 2 x d y\right] d x=\int_{0}^{3} 2 x(6-2 x) d x=18 .
$$

