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Theorem 14.11

Let R be a closed region in the plane, and f : R — R be a continuously differentiable
function. Then the area of the surface S = {(z,y, z) ’ (z,y) € R,z = f(x,y)} is given
by

H\/l + fulz, y)? + fy(z,y)2dA.

Example 14.13. Find the surface area of the paraboloid z = 1 + 22 + 2 that lies above
the unit disk.

Let f(z,y) = 14+2*+y?> and R = {(x, Y) | 22 +y? < 1}. Then the surface area of interest

is given by

Lf\/l+fx($,y)2+fy($,y)2d14:£fmdA‘

Since R can also be expressed as R = {(a:,y) ‘ —1<ao<l,-V1I-22<y<+v1-— 1:2}, the
Fubini Theorem then implies that

1 V1-22
JJ\/HTWCZA:J <J \/1+4£2+4y2dy>d1’.
Ny

R

2 /02 122
By the fact that J\/az + b2u? du = ;—b [w +In (bu+ a? + bQUZ)} +Cifa,b>0,
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we find that
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Therefore,
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Integrating by parts,
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By the substitution of variable x = sin #, we find that
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By the substitution of variable tan% = t, we further obtain that
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Therefore,
J] \/1 + folz,y)? + fy(z,y)2dA = \fw + % [—\f - % + Z?W} (5\/5 —1).
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14.4 'Triple Integrals and Applications

Let @ be a bounded region in the space, and f : ) — R be a non-negative function which

described the point density of the region. We are interested in the mass of Q).



We start with the simple case that @ = [a,b] x [c,d] x [r, s] is a cube. Let

P.={a=xg<mz < - <x, =0},
Py={c=yw <y < <ym=d},

P.={r=2<zn<-<z,=s},

be partitions of [a,b], [c,d], [r,s], respectively, and P be a collection of non-overlapping

cubes given by
P = {Rij| Riji = [mi—1, @] % [yj-1,y;] ¥ [ze-1, 26, 1 <i<n,1<j<m,1<k<p}.

Such a collection P is called a partition of (), and the norm of P is the maximum of the

length of the diagonals of all R;;;; that is

HPH = max{\/(xi — 272;1)2 + (y] — yj,1)2 + (Zk — Zk,1)2 1<i<n,l <7< m, 1<k p} .

A Riemann sum of f for this partition P is given by
n m P
Z Z Z S i Miges Gigie) (s — i) (Y5 — yj—1) (21 — 26-1)

where {(&jk,mjk, Cijk)}lgign,lgjgm,1<k<p is a collection of points satistying (&;k, Mijk, Gijk) €
Qijr forall 1 <7< n, 1 <j<mandl <k <p The mass of ) then should be the
“limit” of Riemann sums as |P| approaches zero. In general, we can remove the restrictions
that f is non-negative on R and still consider the limit of the Riemann sums. We have the
following

Let @ = [a,b] x [¢,d] x [r, s] be a cube in the space, and f : @ — R be a function. f is
said to be Riemann integrable on @ if there exists a real number I such that for every
e > 0, there exists 0 > 0 such that if P is a partition of @ satisfying |P| < J, then
any Riemann sum of f for P belongs to (I — e, I + ¢). Such a number [ (is unique if

it exists and) is called the Riemann integral or triple integral of f on () and is

denoted by fjff(a:, y,z)dV.
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