微積分 MA1002－A 上課筆記（精簡版） 2019．05．28．

Suppose that $R=[a, b] \times[c, b]=\{(x, y) \mid a \leqslant x \leqslant b, c \leqslant y \leqslant d\}$ is a rectangular region in the plane, $f: R \rightarrow \mathbb{R}$ is a non-negative continuous function. Let $\mathcal{P}_{x}=\left\{a=x_{0}<x_{1}<\right.$ $\left.x_{2}<\cdots<x_{n}=b\right\}$ and $\mathcal{P}_{y}=\left\{c=y_{0}<y_{1}<\cdots<y_{m}=d\right\}$ be partitions of $[a, b]$ and $[c, d]$, respectively, and $R_{i j}$ denote the rectangle $\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$. The collection of rectangles $\mathcal{P}=\left\{R_{k} \mid 1 \leqslant k \leqslant n m\right\}$ is called a partition of R. A Riemann sum of f for \mathcal{P} is of the form

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(\xi_{i j}, \eta_{i j}\right) A_{i j}
$$

where $\left\{\left(\xi_{i j}, \eta_{i j}\right)\right\}_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m}$ is a collection of point in R such that $\left(\xi_{i j}, \eta_{i j}\right) \in R_{i j}$, and $A_{i j}=\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)$ is the area of the rectangle $R_{i j}$. Define the norm of \mathcal{P}, denoted by $\|\mathcal{P}\|$, as the maximum length of the diagonal of $R_{i j}$.

Definition 14.1

Let $R=[a, b] \times[c, d]$ be a rectangle in the plane, and $f: R \rightarrow \mathbb{R}$ be a function. f is said to be Riemann integrable on R if there exists a real number V such that for every $\varepsilon>0$, there exists $\delta>0$ such that if \mathcal{P} is partition of R satisfying $\|\mathcal{P}\|<\delta$, then any Riemann sums of f for the partition \mathcal{P} belongs to the interval $(V-\varepsilon, V+\varepsilon)$. Such a number V (is unique if it exists and) is called the Riemann integral or double integral of f on R and is denoted by $\iint_{R} f(x, y) d A$.

For general bounded region R in the plane, let $r>0$ be such that $R \subseteq[-r, r]^{2}$, and we define $\iint_{R} f(x, y) d A$ as $\iint_{[-r, r]^{2}} \tilde{f}(x, y) d A$, where \tilde{f} is the zero extension of f.

Theorem 14.7: Fubini's Theorem

Let R be a region in the plane, and $f: R \rightarrow \mathbb{R}$ be continuous (but no necessary non-negative).

1. If R is given by $R=\left\{(x, y) \mid a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x
$$

2. If R is given by $R=\left\{(x, y) \mid c \leqslant y \leqslant d, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d}\left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right) d y
$$

Example 14.8. Find the volume of the solid region bounded by the paraboloid $z=4-$ $x^{2}-2 y^{2}$ and the $x y$-plane. By the definition of double integrals, the volume of this solid is given by $\iint_{R}\left(4-x^{2}-2 y^{2}\right) d A$, where R is the region $\left\{(x, y) \mid x^{2}+2 y^{2} \leqslant 4\right\}$. Writing R as

$$
R=\left\{(x, y) \mid-2 \leqslant x \leqslant 2,-\sqrt{\frac{4-x^{2}}{2}} \leqslant y \leqslant \sqrt{\frac{4-x^{2}}{2}}\right\}
$$

or

$$
R=\left\{(x, y) \mid-\sqrt{2} \leqslant y \leqslant \sqrt{2},-\sqrt{4-2 y^{2}} \leqslant x \leqslant \sqrt{4-2 y^{2}}\right\}
$$

the Fubini Theorem then implies that

$$
\begin{aligned}
\iint_{R}\left(4-x^{2}-2 y^{2}\right) d A & =\int_{-2}^{2}\left(\int_{-\sqrt{\frac{4-x^{2}}{2}}}^{\sqrt{\frac{4-x^{2}}{2}}}\left(4-x^{2}-2 y^{2}\right) d y\right) d x \\
& =\int_{-\sqrt{2}}^{\sqrt{2}}\left(\int_{-\sqrt{4-2 y^{2}}}^{\sqrt{4-2 y^{2}}}\left(4-x^{2}-2 y^{2}\right) d x\right) d y
\end{aligned}
$$

1. Integrating in y first then integrating in x : for fixed $x \in[-2,2]$,

$$
\begin{aligned}
\int_{-\sqrt{\frac{4-x^{2}}{2}}}^{\sqrt{\frac{4-x^{2}}{2}}}\left(4-x^{2}-2 y^{2}\right) d y & =\int_{-\sqrt{\frac{4-x^{2}}{2}}}^{\sqrt{\frac{4-x^{2}}{2}}}\left(4-x^{2}\right) d y-2 \int_{-\sqrt{\frac{4-x^{2}}{2}}}^{\sqrt{\frac{4-x^{2}}{2}}} y^{2} d y \\
& =\sqrt{2}\left(4-x^{2}\right)^{\frac{3}{2}}-\frac{4}{3}\left(\sqrt{\frac{4-x^{2}}{2}}\right)^{3}=\frac{2 \sqrt{2}}{3}\left(4-x^{2}\right)^{\frac{3}{2}}
\end{aligned}
$$

Therefore, by the substitution $x=2 \sin \theta$ (so that $d x=2 \cos \theta d \theta$),

$$
\begin{aligned}
\iint_{R}\left(4-x^{2}-2 y^{2}\right) d A & =\frac{2 \sqrt{2}}{3} \int_{-2}^{2}\left(4-x^{2}\right)^{\frac{3}{2}} d x=\frac{2 \sqrt{2}}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \cos ^{3} \theta \cdot 2 \cos \theta d \theta \\
& =\frac{32 \sqrt{2}}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta=\frac{64 \sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta \\
& =\frac{64 \sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}}\left(\frac{1+\cos 2 \theta}{2}\right)^{2} d \theta \\
& =\frac{16 \sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}}\left(1+2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right) d \theta \\
& =\frac{16 \sqrt{2}}{3}\left[\frac{3}{2} \cdot \frac{\pi}{2}+\sin \left(2 \cdot \frac{\pi}{2}\right)+\frac{1}{8} \sin \left(4 \cdot \frac{\pi}{2}\right)\right]=4 \sqrt{2} \pi
\end{aligned}
$$

2. Integrating in x first then integrating in y : for fixed $y \in[-\sqrt{2}, \sqrt{2}]$,

$$
\begin{aligned}
\int_{-\sqrt{4-2 y^{2}}}^{\sqrt{4-2 y^{2}}}\left(4-x^{2}-2 y^{2}\right) d x & =\int_{-\sqrt{4-2 y^{2}}}^{\sqrt{4-2 y^{2}}}\left(4-2 y^{2}\right) d x-\int_{-\sqrt{4-2 y^{2}}}^{\sqrt{4-2 y^{2}}} x^{2} d x \\
& =2\left(4-2 y^{2}\right)^{\frac{3}{2}}-\frac{2}{3}\left(4-2 y^{2}\right)^{\frac{3}{2}}=\frac{4}{3}\left(4-2 y^{2}\right)^{\frac{3}{2}}
\end{aligned}
$$

thus by the substitution of variable $y=\sqrt{2} \sin \theta$ (so that $d y=\sqrt{2} \cos \theta d \theta$),

$$
\begin{aligned}
\iint_{R}\left(4-x^{2}-2 y^{2}\right) d A & =\frac{4}{3} \int_{-\sqrt{2}}^{\sqrt{2}}\left(4-2 y^{2}\right)^{\frac{3}{2}} d y=\frac{4}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \cos ^{3} \theta \cdot \sqrt{2} \cos \theta d \theta \\
& =\frac{32 \sqrt{2}}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta=\frac{64 \sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta=4 \sqrt{2} \pi
\end{aligned}
$$

Example 14.9. Find the volume of the solid region bounded above by the paraboloid $z=1-x^{2}-y^{2}$ and below by the plane $z=1-y$.

Let R be the region in the plane whose boundary points (x, y) satisfies $1-x^{2}-y^{2}=1-y$ or equivalently, $x^{2}+y^{2}-y=0$. Then the volume of the solid described above is given by $\iint_{R}\left[\left(1-x^{2}-y^{2}\right)-(1-y)\right] d A$. Note that the region R is a disk centered at $\left(0, \frac{1}{2}\right)$ with $\stackrel{R}{\text { radius }} \frac{1}{2}$ and can be written as

$$
R=\left\{(x, y) \mid 0 \leqslant y \leqslant 1,-\sqrt{y-y^{2}} \leqslant x \leqslant \sqrt{y-y^{2}}\right\} .
$$

Therefore,

$$
\begin{aligned}
& \iint_{R} {\left[\left(1-x^{2}-y^{2}\right)-(1-y)\right] d A=\int_{0}^{1}\left(\int_{-\sqrt{y-y^{2}}}^{\sqrt{y-y^{2}}}\left(y-x^{2}-y^{2}\right) d x\right) d y } \\
& \quad=\int_{0}^{1}\left(2\left(y-y^{2}\right)^{\frac{3}{2}}-\frac{2}{3}\left(y-y^{2}\right)^{\frac{3}{2}}\right) d y=\frac{4}{3} \int_{0}^{1}\left(y-y^{2}\right)^{\frac{3}{2}} d y=\frac{4}{3} \int_{0}^{1}\left[\frac{1}{4}-\left(y-\frac{1}{2}\right)^{2}\right]^{\frac{3}{2}} d y
\end{aligned}
$$

Making the substitution of variable $y-\frac{1}{2}=\frac{1}{2} \sin \theta$ (so that $d y=\frac{1}{2} \cos \theta d \theta$),

$$
\iint_{R}\left[\left(1-x^{2}-y^{2}\right)-(1-y)\right] d A=\frac{4}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{3} \theta}{8} \cdot \frac{1}{2} \cos \theta d \theta=\frac{1}{6} \int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta=\frac{\pi}{32}
$$

Example 14.10. Find the iterated integral $\int_{0}^{1}\left(\int_{y}^{1} e^{-x^{2}} d x\right) d y$.

Let $R=\{(x, y) \mid 0 \leqslant y \leqslant 1, y \leqslant x \leqslant 1\}$. Since R can also be expressed as $R=$ $\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant x\}$, by the Fubini Theorem we find that

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{y}^{1} e^{-x^{2}} d x\right) d y & =\iint_{R} e^{-x^{2}} d A=\int_{0}^{1}\left(\int_{0}^{x} e^{-x^{2}} d y\right) d x=\int_{0}^{1} x e^{-x^{2}} d x \\
& =-\left.\frac{1}{2} e^{-x^{2}}\right|_{x=0} ^{x=1}=\frac{1}{2}\left(1-e^{-1}\right)
\end{aligned}
$$

14.3 Surface Area

Let $R=[a, b] \times[c, d]$ be a rectangle in the plane, and $f: R \rightarrow \mathbb{R}$ be a continuously differentiable function. We are interested in the area of the surface

$$
S=\{(x, y, z) \mid(x, y) \in R, z=f(x, y)\}
$$

Let $\mathcal{P}=\left\{R_{i j} \mid 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m\right\}$ be a partition of R. Partition each rectangle $R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$ into two triangles $\Delta_{i j}^{1}$ and $\Delta_{i j}^{2}$, where $\Delta_{i j}^{1}$ has vertices $\left(x_{i-1}, y_{j-1}\right)$, $\left(x_{i}, y_{j-1}\right),\left(x_{i-1}, y_{j}\right)$ and $\Delta_{i j}^{2}$ has vertices $\left(x_{i}, y_{j}\right),\left(x_{i-1}, y_{j}\right),\left(x_{i}, y_{j-1}\right)$. Then intuitively, the area of the surface $f\left(\Delta_{i j}^{1}\right)$ can be approximated by the area of the triangle $T_{i j}^{1}$ with vertices $\left(x_{i-1}, y_{j-1}, f\left(x_{i-1}, y_{j-1}\right)\right),\left(x_{i}, y_{j-1}, f\left(x_{i}, y_{j-1}\right)\right)$ and $\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right)$, while the area of the surface $f\left(\Delta_{i j}^{2}\right)$ can be approximated by the area of the triangle $T_{i j}^{2}$ with vertices $\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right),\left(x_{i-1}, y_{j}, f\left(x_{i-1}, y_{j}\right)\right)$ and $\left(x_{i}, y_{j-1}, f\left(x_{i}, y_{j-1}\right)\right)$. Therefore, the area of the surface $f\left(R_{i j}\right)$ can be approximated by the sum of area of triangles $T_{i j}^{1}$ and $T_{i j}^{2}$, and the area of the surface S can be approximated by the sum of the area of the triangles $T_{i j}^{1}$ and $T_{i j}^{2}$, where is sum is taken over all $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$.

