微積分 MA1002－A 上課筆記（精簡版） 2019．05．23．

Suppose that $R=[a, b] \times[c, b]=\{(x, y) \mid a \leqslant x \leqslant b, c \leqslant y \leqslant d\}$ is a rectangular region in the plane, $f: R \rightarrow \mathbb{R}$ is a non-negative continuous function, and D is the solid

$$
\mathrm{D}=\{(x, y, z) \mid(x, y) \in R, 0 \leqslant z \leqslant f(x, y)\} .
$$

Let $\mathcal{P}_{x}=\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right\}$ and $\mathcal{P}_{y}=\left\{c=y_{0}<y_{1}<\cdots<y_{m}=d\right\}$ be partitions of $[a, b]$ and $[c, d]$, respectively. Let $R_{i j}$ denote the rectangle $\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$. By relabeling the rectangles as $R_{1}, R_{2}, \cdots, R_{n m}$, the collection of rectangles $\mathcal{P}=\left\{R_{k} \mid 1 \leqslant\right.$ $k \leqslant n m\}$ is called a partition of R. Let $\left\{\left(\xi_{k}, \eta_{k}\right)\right\}_{k=1}^{n m}$ be a collection of point in R such that $\left(\xi_{k}, \eta_{k}\right) \in R_{k}$, the volume of the solid can be approximated by

$$
\sum_{k=1}^{n m} f\left(\xi_{k}, \eta_{k}\right) A_{k}
$$

where A_{k} is the area of the rectangle R_{k}. The sum above is called a Riemann sum of f for partition \mathcal{P}. Define the norm of \mathcal{P}, denoted by $\|\mathcal{P}\|$, as the maximum length of the diagonal of R_{k}, then the volume of D is the "limit"

$$
\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{k=1}^{n m} f\left(\xi_{k}, \eta_{k}\right) A_{k}
$$

as long as "the limit exists". Similar to the discussion of the limit of Riemann sums in the case of functions of one variable, we can remove the restrictions that f is continuous and non-negative on R and still consider the limit of the Riemann sums. We have the following

Definition 14.1

Let $R=[a, b] \times[c, d]$ be a rectangle in the plane, and $f: R \rightarrow \mathbb{R}$ be a function. f is said to be Riemann integrable on R if there exists a real number V such that for every $\varepsilon>0$, there exists $\delta>0$ such that if \mathcal{P} is partition of R satisfying $\|\mathcal{P}\|<\delta$, then any Riemann sums of f for the partition \mathcal{P} belongs to the interval $(V-\varepsilon, V+\varepsilon)$. Such a number V (is unique if it exists and) is called the Riemann integral or double integral of f on R and is denoted by $\iint_{R} f(x, y) d A$.

How about the case that the base R of the solid is not a closed and bounded rectangle? In this case we choose $r>0$ large enough such that $R \subseteq[-r, r]^{2} \equiv[-r, r] \times[-r, r]$ and then for a function $f: R \rightarrow \mathbb{R}$, define $\tilde{f}:[-r, r]^{2} \rightarrow \mathbb{R}$ by

$$
\tilde{f}(x, y)=\left\{\begin{array}{cl}
f(x, y) & \text { if }(x, y) \in R \\
0 & \text { if }(x, y) \notin R .
\end{array}\right.
$$

We define $\iint_{R} f(x, y) d A$ as $\iint_{[-r, r]^{2}} \tilde{f}(x, y) d A$ (when the latter double integral exists).
Before proceeding, let us talk about a special class of regions.

Definition 14.2

A region R is said to be have area if the constant function 1 is Riemann integrable on R. If R has area, then the area of R is defined as the integral $\iint_{R} 1 d A$.

The following theorem is an analogy of Theorem 4.10.

Theorem 14.3

Let R be a closed and bounded region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function. If R has area and f is continuous on R, then f is Riemann integrable on R.

Similar to the properties for integrals of functions of one variable, we have the following

Theorem 14.4: Properties of double integrals

Let R be a closed and bounded region in the plane, $f, g: R \rightarrow \mathbb{R}$ be functions that are Riemann integrable on R, and c be a real number.

1. $c f$ is Riemann integrable on R, and

$$
\iint_{R}(c f)(x, y) d A=c \iint_{R} f(x, y) d A
$$

2. $f \pm g$ are Riemann integrable on R, and

$$
\iint_{R}(f \pm g)(x, y) d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A
$$

3. If $f(x, y) \geqslant g(x, y)$ for all $(x, y) \in R$, then

$$
\iint_{R} f(x, y) d A \geqslant \iint_{R} g(x, y) d A
$$

4. $|f|$ is Riemann integrable, and

$$
\left|\iint_{R} f(x, y) d A\right| \leqslant \iint_{R}|f(x, y)| d A
$$

Definition 14.5

Two bounded regions R_{1} and R_{2} in the plane are said to be non-overlapping if $R_{1} \cap R_{2}$ has zero area.

Theorem 14.6

Let R_{1} and R_{2} be non-overlapping regions in the plane, $R=R_{1} \cup R_{2}$, and $f: R \rightarrow \mathbb{R}$ be such that f is Riemann integrable on R_{1} and R_{2}. Then f is Riemann integrable on R and

$$
\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A
$$

14.2 The Iterated Integrals and Fubini's Theorem

Let R be a bounded region with area, and $f: R \rightarrow \mathbb{R}$ be a non-negative continuous function. As explained in the previous section, the volume of the solid

$$
\mathrm{D}=\{(x, y, z) \mid(x, y) \in R, 0 \leqslant z \leqslant f(x, y)\}
$$

is given by $\iint_{R} f(x, y) d A$. We are concerned with computing this double integral in this section.

Recall from Section 7.2 that if D is a solid lies between two planes $x=a$ and $x=b$ $(a<b)$, and the area of the cross section of D taken perpendicular to the x-axis is $A(x)$, then

$$
\text { the volume of } \mathrm{D}=\int_{a}^{b} A(x) d x
$$

Therefore, if the region R is given by

$$
R=\left\{(x, y) \mid a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}
$$

for some continuous functions $g_{1}, g_{2}:[a, b] \rightarrow \mathbb{R}$, then the area of the cross section of D taken perpendicular to the x axis is

$$
A(x)=\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y
$$

which shows that the volume of D is given by $\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x$. Therefore, in this special case we find that

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x \tag{14.2.1}
\end{equation*}
$$

Similarly, recall that if D lies between $y=c$ and $y=d(c<d)$, and the area of the cross section of D taken perpendicular to the y-axis is $A(y)$, then

$$
\text { the volume of } \mathrm{D}=\int_{c}^{d} A(y) d y
$$

thus similar argument shows that

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\int_{c}^{d}\left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right) d y \tag{14.2.2}
\end{equation*}
$$

Figure 14.2: Finding the volume of D using the method of cross section
We note that in formulas (14.2.1), we have to compute the integral $\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y$ for each fixed $x \in[a, b]$ which gives the area of the cross section $A(x)$, then compute the integral $\int_{a}^{b} A(x) d x$ to obtain the volume of D . This way of computing double integrals is called iterated integrals, and sometime we omit the parentheses and write it as

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Similarly, the iterated integral appearing in (14.2.2) can also be written as

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

The evaluation of the double integral $\iint_{R} f(x, y) d A$ can be generalized for a more general class of functions, and it is called the Fubini Theorem.

Theorem 14.7: Fubini's Theorem

Let R be a region in the plane, and $f: R \rightarrow \mathbb{R}$ be continuous (but no necessary non-negative).

1. If R is given by $R=\left\{(x, y) \mid a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x
$$

2. If R is given by $R=\left\{(x, y) \mid c \leqslant y \leqslant d, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d}\left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right) d y
$$

Example 14.8. Find the volume of the solid region bounded by the paraboloid $z=4-$ $x^{2}-2 y^{2}$ and the $x y$-plane. By the definition of double integrals, the volume of this solid is given by $\iint_{R}\left(4-x^{2}-2 y^{2}\right) d A$, where R is the region $\left\{(x, y) \mid x^{2}+2 y^{2} \leqslant 4\right\}$. Writing R as

$$
R=\left\{(x, y) \mid-2 \leqslant x \leqslant 2,-\sqrt{\frac{4-x^{2}}{2}} \leqslant y \leqslant \sqrt{\frac{4-x^{2}}{2}}\right\}
$$

or

$$
R=\left\{(x, y) \mid-\sqrt{2} \leqslant y \leqslant \sqrt{2},-\sqrt{4-2 y^{2}} \leqslant x \leqslant \sqrt{4-2 y^{2}}\right\},
$$

the Fubini Theorem then implies that

$$
\begin{aligned}
\iint_{R}\left(4-x^{2}-2 y^{2}\right) d A & =\int_{-2}^{2}\left(\int_{-\sqrt{\frac{4-x^{2}}{2}}}^{\sqrt{\frac{4-x^{2}}{2}}}\left(4-x^{2}-2 y^{2}\right) d y\right) d x \\
& =\int_{-\sqrt{2}}^{\sqrt{2}}\left(\int_{-\sqrt{4-2 y^{2}}}^{\sqrt{4-2 y^{2}}}\left(4-x^{2}-2 y^{2}\right) d x\right) d y
\end{aligned}
$$

