微積分 MA1002－A 上課筆記（精簡版） 2019．05．21．

Ching－hsiao Arthur Cheng 鄭經㩓

Chapter 14

Multiple Integration

14.1 Double Integrals and Volume

Let R be a closed and bounded region in the plane, and $f: R \rightarrow \mathbb{R}$ be a non-negative continuous function. We are interested in the volume of the solid in the space

$$
\mathrm{D}=\{(x, y, z) \mid(x, y) \in R, 0 \leqslant z \leqslant f(x, y)\} .
$$

First we assume that $R=[a, b] \times[c, b]=\{(x, y) \mid a \leqslant x \leqslant b, c \leqslant y \leqslant d\}$ be a rectangle. Let $\mathcal{P}_{x}=\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right\}$ and $\mathcal{P}_{y}=\left\{c=y_{0}<y_{1}<\cdots<y_{m}=d\right\}$ be partitions of $[a, b]$ and $[c, d]$, respectively, $R_{i j}$ denote the rectangle $\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$, and $\left\{\left(\alpha_{i}, \beta_{j}\right)\right\}_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m}$ be a collection of points such that $\alpha_{i} \in\left[x_{i-1}, x_{i}\right]$ and $\beta_{j} \in\left[y_{j-1}, y_{j}\right]$. Then as before, we consider an approximation of the volume of D given by

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(\alpha_{i}, \beta_{j}\right)\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right) .
$$

Then the limit of the sum above, as $\left\|\mathcal{P}_{x}\right\|,\left\|\mathcal{P}_{y}\right\|$ approaches zero, is the volume of D . The collection of rectangles $\mathcal{P}=\left\{R_{i j}\right\}_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m}$ is called a partition of R.

Figure 14.1: The volume of D can be obtained by making $\left\|\mathcal{P}_{x}\right\|,\left\|P_{y}\right\| \rightarrow 0$.

In general, by relabeling the rectangles as $R_{1}, R_{2}, \cdots, R_{n m}$ (thus $\mathcal{P}=\left\{R_{k} \mid 1 \leqslant k \leqslant\right.$ $n m\}$), and letting $\left\{\left(\xi_{k}, \eta_{k}\right)\right\}_{k=1}^{n m}$ be a collection of point in R such that $\left(\xi_{k}, \eta_{k}\right) \in R_{k}$, we can consider an approximation of the volume of the solid given by

$$
\sum_{k=1}^{n} f\left(\xi_{k}, \eta_{k}\right) A_{k}
$$

where A_{k} is the area of the rectangle R_{k}. The sum above is called a Riemann sum of f for partition \mathcal{P}. With $\|\mathcal{P}\|$, called the norm of \mathcal{P}, denoting the maximum length of the diagonal of R_{k}; that is,

$$
\|\mathcal{P}\|=\max \left\{\ell_{k} \mid \ell_{k} \text { is the length of the diagonal of } R_{k}, 1 \leqslant k \leqslant n m\right\}
$$

then the volume of D is the "limit"

$$
\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{k=1}^{n} f\left(\xi_{k}, \eta_{k}\right) A_{k}
$$

as long as "the limit exists". Similar to the discussion of the limit of Riemann sums in the case of functions of one variable, we can remove the restrictions that f is continuous and non-negative on R and still consider the limit of the Riemann sums. We have the following

Definition 14.1

Let $R=[a, b] \times[c, d]$ be a rectangle in the plane, and $f: R \rightarrow \mathbb{R}$ be a function. f is said to be Riemann integrable on R if there exists a real number V such that for every $\varepsilon>0$, there exists $\delta>0$ such that if \mathcal{P} is partition of R satisfying $\|\mathcal{P}\|<\delta$, then any Riemann sums for the partition \mathcal{P} belongs to the interval $(V-\varepsilon, V+\varepsilon)$. Such a number V (is unique if it exists and) is called the Riemann integral or double integral of f on R and is denoted by $\iint_{R} f(x, y) d A$.

