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Theorem 13.41: Implicit Function Theorem (Special case)

Let F' be a function of n variables (zq,z9, -+ ,x,) such that F, , F,,, -+, Fy,
are continuous in a neighborhood of (ay,as, -+ ,a,. If F(aj,as, -+ ,a,) = 0 and
F, (ai,as, - ,a,) # 0, then locally near (aj,as,---,a,) there exists a unique
continuous function f satisfying F(xy, -+, 2,1, f(21, - ,2p—1)) = 0 and a, =
flai, -+ ,an,_1). Moreover, for 1 < j<n-—1,

ﬁ(%, ) = — Fo (1, o, f(T1, 5 Tn1))

5%‘ an(fﬂl,"' ,an,f(ﬂil,"' 7377171)) .

Theorem 13.69: Lagrange Multiplier Theorem - Simplest Version

Let f and g be continuously differentiable functions of two variables. Suppose that
on the level curve g(z,y) = c the function f attains its extrema at (xo,yo). If
(Vg)(xo,y0) # 0, then there is a real value A such that

(V) (o, 90) = MV 9) (0, 0)

Remark 13.70. The scalar A in the theorem above is called a Lagrange multiplier.

Proof of Theorem 13.69. First we note that (xg, o) is on the level curve g(z,y) = ¢; thus
¢ = g(zo, Yo)-

Define F(z,y) = g(z,y) — g(o,¥0). Then F has continuous first partial derivatives, and
(VF)(xo,y0) = (Vg)(z0,v0) # 0. Then either F,(zo,y0) # 0 or F,(zo,y0) # 0. Suppose
that Fy,(zo,y0) # 0. Then the Implicit Function Theorem implies that there exist § > 0 and
a unique differentiable function h : (g — J, 29 + J) — R such that

F(z,h(z)) =0 and Yo = h(xp) .

In other words, the set {(z, h(z)) |29—08 < x < o+3} is a subset of the level curve g(z,y) =
9(o,yo). Therefore, the function G : (xg — §,z9 + 0) — R defined by G(z) = f(x,h(x))

attains its extrema at (an interior point) xq; thus

G'(xo) = fu(zo,y0) + fy(xo, yo)h' (z0) = 0.

Since the implicit differentiation shows that

ooy Felwo,h(x0)) _ 9u(To, Yo)
" (’IO) N Fy(l‘Oa h(mO)) gy(%, yO) ’



we conclude that
9z (I07 ?Jo)

gy(x07 yO)
If f,(z0,90) = 0, then f,(20,y0) = 0 which implies that (V f)(zo,y0) =0 =0- (Vg)(zo, yo)-
If f,(x0,y0) # 0, then

fa (0, y0) —fy(ﬂﬂo,’yo) =0.

fa (o, o) _ 92(%0, Yo)
fy(@o.y0)  gy(0, 90)
which implies that (V f)(zo,v0)// (Vg)(xo,y0); thus there exists A such that

(V) (@o,90) = AM(Vg)(zo,%0) -

Similar argument can be applied to the case F,(xg,yo) # 0, and we omit the proof for
this case. [

Example 13.71. Find the extreme value of f(x,y) = 4xy subject to the constraint

22 2
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Let g(x,y) = % + %6 — 1. Suppose that on the level curve g(z,y) = 0 the function f

attains its extrema at (zg,y). Note that then (Vg)(zg,90) # 0 (since (xq,y0) # (0,0));
thus the Lagrange Multiplier Theorem implies that there exists A € R such that
2z
(40, 420) = (V) (@0, 90) = A(V) (0, 90) = AT, )

2)\.%0 )\yo

22 42
22 as well as =2 + 2% = 1. Therefore,
8 9 16

Therefore, (z,yo) satisfies 4yy =
A # 0, and

and 4zg =

4 _)\’yo_)\ )\$0_)\2I0
T TRII8 T 144

The identity above implies that xo = 0 or A = +24.

1. If zg = 0, then yg = +4 which shows that A = 0, a contradiction.
2. Tf A = +24, then zo = i?’%; thus

P L% %
916 16 8

Therefore, yo = +2+/2 which implies that ¢ = ig\z@. At these (xo,y0), f(zo,y0) =

2 2
+24. Therefore, on the ellipse % + %6 = 1 the maximum of f is 24 <at (xo,%0) =

(+2v2, ir?)\f» and the minimum of f s ~24 (at (zo, y0) = (£2v2, 13\2@))



Example 13.72. Find the extreme value of f(z,y) = 4zy, where z > 0 and y > 0, subject

2 2
to the constraint % + Y = 1. From the previous example we find that the maximum of

16
fis 24 (at (0,%0) = (2\/5, 3\2/5)) The minimum of f occurs at the end-points (0,4) or

(3,0). In either points, the value of f is 0; thus the minimum of f is 0.

2 2
Example 13.73. Find the extreme value of f(z,y) = 4xy, where (z,y) satisfies %—{—‘7{—6 <1
2 2

We have find the extreme value of f, under the constraint % + 31/—6 =1, is £24. Therefore,
2 2
it suffices to consider the extreme value of f in the interior % + 31/—6 <1

Assume that f attains its extreme value at an interior point (xg,yo). Then (xq, o) is a
critical point of f; thus
fae(xo,90) = fy(w0,0) =0
which implies that (zo,y0) = (0,0). Since f(0,0) =0, f(0,0) is not an extreme value of f.
Therefore, the extreme value of f on the region 5;2 + ?1J(23 < 1is +£24.
We note that (0,0) in fact is a saddle point of f since f,.(0,0)f,,(0,0) — f.,(0,0)* =
—16 < 0.

Similar argument of proving Theorem 13.69 can be used to show the following

Theorem 13.74

Let f and g be continuously differentiable functions of n variables. Suppose that on

the level curve g(xy,- - ,z,) = c the function f attains its extrema at (a1, - ,a,). If
(Vg)(ay,--- ,a,) # 0, then there is a real value X such that

(vf)(ala T aan) = )‘(Vg)(alv T 7an>'

Example 13.75. Find the minimum value of f(z,y,2) = 22® + y? + 32% subject to the
constraint 2z — 3y — 4z = 49.

Let g(x,y,2) = 2z — 3y — 4z — 49. Then (Vg) # 0; thus if f attains its relative extrema
at (o, Yo, 20), there exists A € R such that (V f)(zo, v0, 20) = A(Vg)(x0, Yo, 20). Therefore,

(41‘0, 2y0, 620) = )\(2, —3, —4)

or equivalently, A = 2xy = —gyo = —%Zo- Since 2xg — 3yg — 429 = 49, we find that A = 6
which implies that
(.flf(), Yo, ZO) - (3, *9, *4) .



Since f grows beyond any bound as 4/ 22 + y2 + 22 approaches o, we find that f(3, -9, —4) =

147 is the minimum of f.

Next, we consider the optimization problem of finding the extreme value of a function

of three variables w = f(x,y, z) subject to two constraints g(x,y, z) = h(z,y,z) = 0.

Theorem 13.76: Lagrange Multiplier Theorem - More General Version

Let f, g and h be continuously differentiable functions of three variables. Suppose
that subject to the constraints g(x,y, z) = ¢; and h(z,y, z) = ¢ the function f attains
its extrema at (o, Yo, 20). If (Vg)(z0, Yo, 20) X (Vh)(z0, Yo, 20) # 0, then there are real
numbers A and p such that

(V) (o, %0, 20) = MV g) (20, Yo, 20) + 1(Vh) (w0, y0, 20) -




