微積分 MA1002－A 上課筆記（精簡版） 2019．05．07．

Theorem 13.41: Implicit Function Theorem (Special case)

Let F be a function of n variables $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that $F_{x_{1}}, F_{x_{2}}, \cdots, F_{x_{n}}$ are continuous in a neighborhood of $\left(a_{1}, a_{2}, \cdots, a_{n}\right.$. If $F\left(a_{1}, a_{2}, \cdots, a_{n}\right)=0$ and $F_{x_{n}}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \neq 0$, then locally near $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ there exists a unique continuous function f satisfying $F\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)=0$ and $a_{n}=$ $f\left(a_{1}, \cdots, a_{n-1}\right)$. Moreover, for $1 \leqslant j \leqslant n-1$,

$$
\frac{\partial f}{\partial x_{j}}\left(x_{1}, \cdots, x_{n-1}\right)=-\frac{F_{x_{j}}\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)}{F_{x_{n}}\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)} .
$$

Definition 13.50

Let f be a function of n variables. The directional derivative of f at $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ in the direction $\boldsymbol{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$, where $u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}=1$, is the limit

$$
\left(D_{u} f\right)\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\lim _{h \rightarrow 0} \frac{f\left(a_{1}+h u_{1}, a_{2}+h u_{2}, \cdots, a_{n}+h u_{n}\right)-f\left(a_{1}, a_{2}, \cdots, a_{n}\right)}{h}
$$

provided that the limit exists. The gradient of f at $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, denoted by $(\nabla f)\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, is the vector

$$
(\nabla f)\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left(f_{x_{1}}\left(a_{1}, \cdots, a_{n}\right), f_{x_{2}}\left(a_{1}, \cdots, a_{n}\right), \cdots, f_{x_{n}}\left(a_{1}, \cdots, a_{n}\right)\right) .
$$

Theorem 13.51

Let f be a function of n variables. If f is differentiable at $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $\boldsymbol{u}=$ $\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ is a unit vector, then

$$
\left(D_{u} f\right)\left(a_{1}, a_{2}, \cdots, a_{n}\right)=(\nabla f)\left(a_{1}, \cdots, a_{n}\right) \cdot \boldsymbol{u}
$$

13.7 Tangent Planes and Normal Lines

- The tangent plane of surfaces

Any three points in the space that are not collinear defines a plane. Suppose that \mathcal{S} is a "surface" (which we have not define yet, but please use the common sense to think about it), and $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane. Given another two point $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ on the surface such that P_{0}, P_{1}, P_{2} are not collinear, let $T_{P_{1} P_{2}}$ denote
the plane determined by P_{0}, P_{1} and P_{2}. If the plane "approaches" a certain plane as P_{1}, P_{2} approaches P_{0}, the "limit" is called the tangent plane of \mathcal{S} at P_{0}.

Now suppose that the surface \mathcal{S} is the graph of a function of two variables $z=f(x, y)$. Consider the tangent plane of \mathcal{S} at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, where $z_{0}=f\left(x_{0}, y_{0}\right)$. For $h, k \neq 0$, let $P_{1}=\left(x_{0}+h, y_{0}, f\left(x_{0}+h, y_{0}\right)\right)$ and $P_{2}=\left(x_{0}, y_{0}+k, f\left(x_{0}, y_{0}+k\right)\right)$, as well as

$$
\boldsymbol{u}=\left(1,0, \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}\right) \quad \text { and } \quad \boldsymbol{v}=\left(0,1, \frac{f\left(x_{0}, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)}{k}\right) .
$$

Then the plane $T_{P_{1} P_{2}}$ is given by

$$
(\boldsymbol{u} \times \boldsymbol{v}) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0,
$$

where $\boldsymbol{u} \cdot \boldsymbol{v}$ and $\boldsymbol{u} \times \boldsymbol{v}$ are the inner product and the cross product of \boldsymbol{u} and \boldsymbol{v} defined by

$$
\boldsymbol{u} \cdot \boldsymbol{v}=\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \quad \text { and } \quad \boldsymbol{u} \times \boldsymbol{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right),
$$

respectively. In other words, the plane $T_{P_{1} P_{2}}$ is given by

$$
\left(-\frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h},-\frac{f\left(x_{0}, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)}{k}, 1\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0 .
$$

Suppose that f is differentiable at $\left(x_{0}, y_{0}\right)$. Passing to the limit as $(h, k) \rightarrow(0,0)$, we find that the limit is

$$
\left(-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right), 1\right) \cdot\left(x-x_{0}, y-y_{0}, z-f\left(x_{0}, y_{0}\right)\right)=0
$$

or equivalently (using $\left.z_{0}=f\left(x_{0}, y_{0}\right)\right)$,

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

On the other hand, if f is differentiable at $\left(x_{0}, y_{0}\right)$, then

$$
\begin{aligned}
f(x, y)= & f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& +\varepsilon_{1}(x, y)\left(x-x_{0}\right)+\varepsilon_{2}(x, y)\left(y-y_{0}\right)
\end{aligned}
$$

for some functions $\varepsilon_{1}, \varepsilon_{2}$ satisfying $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \varepsilon_{1}(x, y)=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \varepsilon_{2}(x, y)=0$. This shows that the rate of convergence of the quantity

$$
\left|f(x, y)-f\left(x_{0}, y_{0}\right)-f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)\right|,
$$

as (x, y) approaches $\left(x_{0}, y_{0}\right)$, is "faster than linear" and this is exactly what we have in mind when talking about tangent planes. Therefore, we conclude that

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. If f is differentiable at $\left(x_{0}, y_{0}\right) \in R$, the tangent plane of the graph of f at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is given by

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

and the vector $\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right)$ is a normal vector to the graph of f at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.

Now suppose that the function of three variables $w=F(x, y, z)$ is continuously differentiable; that is, F_{x}, F_{y}, F_{z} are continuous. Suppose that for some $\left(x_{0}, y_{0}, z_{0}\right)$ in the domain, $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$. W.L.O.G., we assume that $F_{z}\left(x_{0}, y_{0}, z_{0}\right) \neq 0$. Define

$$
G(x, y, z)=F(x, y, z)-F\left(x_{0}, y_{0}, z_{0}\right) .
$$

Then $G_{x}=F_{x}, G_{y}=F_{y}$ and $G_{z}=F_{y}$, and the Implicit Function Theorem (Theorem 13.41) implies that there exists a unique differentiable function $z=f(x, y)$ such that

$$
G(x, y, f(x, y))=0 \quad \text { and } \quad z_{0}=f\left(x_{0}, y_{0}\right)
$$

In other words, the graph of f is a subset of the level surface $F(x, y, z)=F\left(x_{0}, y_{0}, z_{0}\right)$. By the discussion above, the tangent plane of the graph of f at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

and the implicit partial differentiation further shows that the tangent plane above can be rewritten as

$$
z=z_{0}-\frac{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}\left(x-x_{0}\right)-\frac{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}\left(y-y_{0}\right) .
$$

Therefore, the tangent plane of the graph of f at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0 .
$$

On the other hand, note that the graph of f is the same as the level surface $F(x, y, z)=$
$F\left(x_{0}, y_{0}, z_{0}\right)$; thus we conclude that

Let $w=F(x, y, z)$ be a function of three variables such that F_{x}, F_{y} and F_{z} are continuous. If $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then the tangent plane of the level surface $F(x, y, z)=F\left(x_{0}, y_{0}, z_{0}\right)$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0,
$$

and the vector $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)$ is a normal vector to the level surface $F(x, y, z)$ $=F\left(x_{0}, y_{0}, z_{0}\right)$.

- Properties of the gradient

Theorem 13.52

Let F be a function of three variables. If F has continuous first partial derivatives F_{x}, F_{y}, F_{z} in a neighborhood of $\left(x_{0}, y_{0}, z_{0}\right)$ and $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)$ is perpendicular/normal to the level surface $F(x, y, z)=F\left(x_{0}, y_{0}, z_{0}\right)$ at $\left(x_{0}, y_{0}, z_{0}\right)$. Moreover, the value of F at $\left(x_{0}, y_{0}, z_{0}\right)$ increase most rapidly in the direction $\frac{(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)}{\left\|(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)\right\|}$ and decreases most rapidly in the direction $-\frac{(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)}{\left\|(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)\right\|}$, where $\|\cdot\|$ denotes the length of the vector.

Remark 13.53. The terminology "the value of f at $\left(x_{0}, y_{0}, z_{0}\right)$ increase most rapidly in the direction \boldsymbol{u} ", where \boldsymbol{u} is a unit vector, means that the directional derivative $\left(D_{v} f\right)\left(x_{0}, y_{0}, z_{0}\right)$, treated as a function of \boldsymbol{v}, attains its maximum at $\boldsymbol{v}=\boldsymbol{u}$.

Proof of Theorem 13.52. We have shown that $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)$ is perpendicular to the level surface $F(x, y, z)=F\left(x_{0}, y_{0}, z_{0}\right)$, so it suffices to show that $\left(D_{v} F\right)\left(x_{0}, y_{0}, z_{0}\right)$ attains its maximum at $\boldsymbol{v}=\boldsymbol{u}$. Nevertheless, by Theorem 13.51, we find that

$$
\left(D_{v} F\right)\left(x_{0}, y_{0}, z_{0}\right)=(\nabla F)\left(x_{0}, y_{0}, z_{0}\right) \cdot \boldsymbol{v}=\left\|(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)\right\| \cos \theta
$$

where θ is the angle between $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)$ and \boldsymbol{v}. Clearly $\left(D_{v} F\right)\left(x_{0}, y_{0}, z_{0}\right)$ attains its maximum when $\theta=0$ which shows that $\left(D_{v} F\right)\left(x_{0}, y_{0}, z_{0}\right)$ attains its maximum at $\boldsymbol{v}=$ $\frac{(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)}{\left\|(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)\right\|}$.

Similarly, for functions of two variables, we have the following

Theorem 13.54

Let f be a function of two variables. If f has continuous first partial derivatives f_{x} and f_{y} in a neighborhood of $\left(x_{0}, y_{0}\right)$ and $(\nabla f)\left(x_{0}, y_{0}\right) \neq \mathbf{0}$, then $(\nabla f)\left(x_{0}, y_{0}\right)$ is perpendicular/normal to the level curve $f(x, y)=f\left(x_{0}, y_{0}\right)$ at $\left(x_{0}, y_{0}\right)$. Moreover, the value of f at $\left(x_{0}, y_{0}\right)$ increase most rapidly in the direction $\frac{(\nabla f)\left(x_{0}, y_{0}\right)}{\left\|(\nabla f)\left(x_{0}, y_{0}\right)\right\|}$ and decreases most rapidly in the direction $-\frac{(\nabla f)\left(x_{0}, y_{0}\right)}{\left\|(\nabla f)\left(x_{0}, y_{0}\right)\right\|}$, where $\|\cdot\|$ denotes the length of the vector.

Example 13.55. Find an equation of the normal line and the tangent plane to the paraboloid

$$
z=1-\frac{1}{10}\left(x^{2}+4 y^{2}\right)
$$

at the point $\left(1,1, \frac{1}{2}\right)$.
Let $F(x, y, z)=z-1+\frac{1}{10}\left(x^{2}+4 y^{2}\right)$. Then $F_{z}\left(1,1, \frac{1}{2}\right) \equiv\left(\frac{1}{5}, \frac{4}{5}, 1\right) \neq \mathbf{0}$; thus Theorem 13.52 implies that the tangent plane of the given paraboloid at $\left(1,1, \frac{1}{2}\right)$ is

$$
z=\frac{1}{2}-\frac{1}{5}(x-1)-\frac{4}{5}(y-1)=\frac{3}{2}-\frac{1}{5} x-\frac{4}{5} y
$$

An equation of the normal line at $\left(1,1, \frac{1}{2}\right)$ is given by

$$
\frac{x-1}{1 / 5}=\frac{y-1}{4 / 5}=\frac{z-1 / 2}{1}
$$

