微積分 MA1002－A 上課筆記（精簡版） 2019．04．30．

Definition 13.31

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. For $\left(x_{0}, y_{0}\right) \in R, f$ is said to be differentiable at $\left(x_{0}, y_{0}\right)$ if $\left(f_{x}\left(x_{0}, y_{0}\right)\right.$, $f_{y}\left(x_{0}, y_{0}\right)$ both exist and)

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\left|f(x, y)-f\left(x_{0}, y_{0}\right)-\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right) \cdot\left(x-x_{0}, y-y_{0}\right)\right|}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}=0 .
$$

The ordered pair $\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right)$ is called the derivative of f at $\left(x_{0}, y_{0}\right)$ if f is differentiable at $\left(x_{0}, y_{0}\right)$ and is usually denoted by $(D f)\left(x_{0}, y_{0}\right)$.

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. For $\left(x_{0}, y_{0}\right) \in R, f$ is said to be differentiable at $\left(x_{0}, y_{0}\right)$ if $\left(f_{x}\left(x_{0}, y_{0}\right)\right.$, $f_{y}\left(x_{0}, y_{0}\right)$ both exist and) there exist functions ε_{1} and ε_{2} such that

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where both ε_{1} and ε_{2} approaches 0 as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.

- Differentiability of functions of several variables

A real-valued function f of n variables is differentiable at $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ if there exist n real numbers $A_{1}, A_{2}, \cdots, A_{n}$ such that

$$
\lim _{\left(x_{1}, \cdots, x_{n}\right) \rightarrow\left(a_{1}, \cdots, a_{n}\right)} \frac{\left|f\left(x_{1}, \cdots, x_{n}\right)-f\left(a_{1}, \cdots, a_{n}\right)-\left(A_{1}, \cdots, A_{n}\right) \cdot\left(x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right)\right|}{\sqrt{\left(x_{1}-a_{1}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}}}=0 .
$$

We also note that when f is differentiable at $\left(a_{1}, \cdots, a_{n}\right)$, then these numbers $A_{1}, A_{2}, \cdots, A_{n}$ must be $f_{x_{1}}\left(a_{1}, \cdots, a_{n}\right), f_{x_{2}}\left(a_{1}, \cdots, a_{n}\right), \cdots, f_{x_{n}}\left(a_{1}, \cdots, a_{n}\right)$, respectively.

Theorem 13.35

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. If f_{x} and f_{y} are continuous in a neighborhood of $\left(x_{0}, y_{0}\right) \in R$, then f is differentiable at $\left(x_{0}, y_{0}\right)$. In particular, if f_{x} and f_{y} are continuous on R, then f is differentiable on R; that is, f is said to be differentiable at every point in R.

Theorem 13.36

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. If f is differentiable at $\left(x_{0}, y_{0}\right)$, then f is continuous at $\left(x_{0}, y_{0}\right)$.

13.5 Chain Rules for Functions of Several Variables

Recall the chain rule for functions of one variable:
Let I, J be open intervals, $f: J \rightarrow \mathbb{R}, g: I \rightarrow \mathbb{R}$ be real-valued functions, and the range of g is contained in J. If g is differentiable at $c \in I$ and f is differentiable at $g(c)$, then $f \circ g$ is differentiable at c and

$$
\left.\frac{d}{d x}\right|_{x=c}(f \circ g)(x)=f^{\prime}(g(c)) g^{\prime}(c) .
$$

For functions of two variables, we have the following

Theorem 13.37

Let $z=f(x, y)$ be a differentiable function (of x and y). If $x=g(t)$ and $y=h(t)$ are differentiable functions (of t), then $z(t)=f(x(t), y(t))$ is differentiable and

$$
z^{\prime}(t)=f_{x}(x(t), y(t)) x^{\prime}(t)+f_{y}(x(t), y(t)) y^{\prime}(t) .
$$

Let $\gamma(t)=(x(t), y(t))$. Then $\gamma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$, and the chain rule above can be written as

$$
\frac{d}{d t}(f \circ \gamma)(t)=(D f)(\gamma(t)) \cdot \gamma^{\prime}(t)
$$

A short-hand notation of the identity above

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left(f_{x}, f_{y}\right) \cdot\left(x^{\prime}, y^{\prime}\right) .
$$

Corollary 13.38

Let $z=f(x, y)$ be a differentiable function (of x and y).

1. If $x=u(s, t)$ and $y=v(s, t)$ are such that $\frac{\partial u}{\partial s}$ and $\frac{\partial v}{\partial s}$ exist, then the first partial derivative $\frac{\partial z}{\partial s}$ of the function $z(s, t)=f(u(s, t), v(s, t))$ exists and

$$
z_{s}(s, t)=f_{x}(u(s, t), v(s, t)) u_{s}(s, t)+f_{y}(u(s, t), v(s, t)) v_{s}(s, t)
$$

2. If $x=u(s, t)$ and $y=v(s, t)$ are such that $\frac{\partial u}{\partial t}$ and $\frac{\partial v}{\partial t}$ exist, then the first partial derivative $\frac{\partial z}{\partial t}$ of the function $z(s, t)=f(u(s, t), v(s, t))$ exists and

$$
z_{t}(s, t)=f_{x}(u(s, t), v(s, t)) u_{t}(s, t)+f_{y}(u(s, t), v(s, t)) v_{t}(s, t) .
$$

Example 13.39. Let $f(x, y)=x^{2} y-y^{2}$. Find $\frac{d z}{d t}$, where $z(t)=f\left(\sin t, e^{t}\right)$.

1. Since $z(t)=e^{t} \sin ^{2} t-e^{2 t}$, by the product rule and the chain rule for functions of one variable, we find that

$$
z^{\prime}(t)=\frac{d e^{t}}{d t} \sin ^{2} t+e^{t} \frac{d \sin ^{2} t}{d t}-2 e^{2 t}=e^{t} \sin ^{2} t+2 e^{t} \sin t \cos t-2 e^{2 t}
$$

2. By the chain rule for functions of two variables,

$$
\begin{aligned}
z^{\prime}(t) & =\left(f_{x}\left(\sin t, e^{t}\right), f_{y}\left(\sin t, e^{t}\right)\right) \cdot \frac{d}{d t}\left(\sin t, e^{t}\right) \\
& =\left.\left(2 x y, x^{2}-2 y\right)\right|_{(x, y)=\left(\sin t, e^{t}\right)} \cdot\left(\cos t, e^{t}\right) \\
& =\left(2 e^{t} \sin t, \sin ^{2} t-2 e^{t}\right) \cdot\left(\cos t, e^{t}\right) \\
& =2 e^{t} \sin t \cos t+e^{t} \sin ^{2} t-2 e^{2 t}
\end{aligned}
$$

Example 13.40. Let $f(x, y)=2 x y$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$, where $z(s, t)=f\left(s^{2}+t^{2}, \frac{s}{t}\right)$.

1. Since $z(s, t)=2\left(s^{2}+t^{2}\right) \frac{s}{t}=\frac{2 s^{3}}{t}+2 s t$, by the product rule we find that

$$
\frac{\partial z}{\partial s}(s, t)=\frac{6 s^{2}}{t}+2 t \quad \text { and } \quad \frac{\partial z}{\partial t}(s, t)=-\frac{2 s^{3}}{t^{2}}+2 s
$$

2. By the chain rule for functions of two variables,

$$
\begin{aligned}
\frac{\partial z}{\partial s}(s, t) & =\left(f_{x}\left(s^{2}+t^{2}, s / t\right), f_{y}\left(s^{2}+t^{2}, s / t\right)\right) \cdot \frac{\partial}{\partial s}\left(s^{2}+t^{2}, \frac{s}{t}\right) \\
& =\left(\frac{2 s}{t}, 2\left(s^{2}+t^{2}\right)\right) \cdot\left(2 s, \frac{1}{t}\right)=\frac{4 s^{2}}{t}+\frac{2 s^{2}+2 t^{2}}{t}=\frac{6 s^{2}}{t}+2 t
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial z}{\partial t}(s, t) & =\left(f_{x}\left(s^{2}+t^{2}, s / t\right), f_{y}\left(s^{2}+t^{2}, s / t\right)\right) \cdot \frac{\partial}{\partial t}\left(s^{2}+t^{2}, \frac{s}{t}\right) \\
& =\left(\frac{2 s}{t}, 2\left(s^{2}+t^{2}\right)\right) \cdot\left(2 t,-\frac{s}{t^{2}}\right)=4 s-\frac{2 s^{3}+2 s t^{2}}{t^{2}}=-\frac{2 s^{3}}{t^{2}}+2 s
\end{aligned}
$$

- The chain rule for functions of several variables

Suppose that $w=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a differentiable function (of $x_{1}, x_{2}, \cdots, x_{n}$). If each x_{i} is a differentiable function of m variables $t_{1}, t_{2}, \cdots, t_{m}$, then

$$
\begin{gathered}
\frac{\partial w}{\partial t_{1}}=\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{1}}+\frac{\partial w}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{1}}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{1}}=\sum_{j=1}^{n} \frac{\partial w}{\partial x_{j}} \frac{\partial x_{j}}{\partial t_{1}} \\
\frac{\partial w}{\partial t_{2}}=\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{2}}+\frac{\partial w}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{2}}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{2}}=\sum_{j=1}^{n} \frac{\partial w}{\partial x_{j}} \frac{\partial x_{j}}{\partial t_{2}} \\
\vdots \\
\frac{\partial w}{\partial t_{m}}=\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{m}}+\frac{\partial w}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{m}}+\cdots+\frac{\partial w}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{m}}=\sum_{j=1}^{n} \frac{\partial w}{\partial x_{j}} \frac{\partial x_{j}}{\partial t_{m}}
\end{gathered}
$$

Using the notation of the matrix multiplication,

$$
\left[\begin{array}{llll}
\frac{\partial w}{\partial t_{1}} & \frac{\partial w}{\partial t_{2}} & \cdots & \frac{\partial w}{\partial t_{m}}
\end{array}\right]=\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right]\left[\begin{array}{cccc}
\frac{\partial x_{1}}{\partial t_{1}} & \frac{\partial x_{1}}{\partial t_{2}} & \cdots & \frac{\partial x_{1}}{\partial t_{m}} \\
\frac{\partial x_{2}}{\partial t_{1}} & \frac{\partial x_{2}}{\partial t_{2}} & \cdots & \frac{\partial x_{2}}{\partial t_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_{n}}{\partial t_{1}} & \frac{\partial x_{n}}{\partial t_{2}} & \cdots & \frac{\partial x_{n}}{\partial t_{m}}
\end{array}\right]
$$

- Implicit partial differentiation

In Section 2.4 we have talked about finding derivatives of a function $y=f(x)$ which is defined implicitly by $F(x, y)=0$ (when F is giving explicitly). Now suppose that $z=F(x, y)$ is a differentiable function and the relation $F(x, y)=0$ defines a differentiable function $y=f(x)$ implicitly (so that $F(x, f(x))=0$). By the chain rule,

$$
0=\frac{d}{d x} F(x, f(x))=F_{x}(x, f(x))+F_{y}(x, f(x)) f^{\prime}(x)
$$

which implies that

$$
f^{\prime}(x)=-\frac{F_{x}(x, f(x))}{F_{y}(x, f(x))} \quad \text { if } \quad F_{y}(x, f(x)) \neq 0
$$

Since f is in general unknown (but exists), we usually write the identity above as

$$
\frac{d y}{d x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)} \quad \text { if } F(x, y)=0 \text { and } F_{y}(x, y) \neq 0
$$

In fact, when F_{x} and F_{y} are continuous in an open region R, and $F(a, b)=0$ and $F_{y}(a, b) \neq 0$ at some point $(a, b) \in R$, the relation $F(x, y)=0$ defines a function $y=f(x)$ implicitly near (a, b) and f is continuously differentiable near $x=a$. This is the Implicit Function Theorem and the precise statement is stated as follows.

Theorem 13.41: Implicit Function Theorem (Special case)

Let $R \subseteq \mathbb{R}^{2}$ be an open region in the plane, and $F: R \rightarrow \mathbb{R}$ be a function of two variables such that F_{x} and F_{y} are continuous in a neighborhood of $(a, b) \in R$. If $F(a, b)=0$ and $F_{y}(a, b)=0$, then there exists $\delta>0$ and a unique continuous function $f:(a-\delta, a+\delta) \rightarrow \mathbb{R}$ satisfying $F(x, f(x))=0$ for all $x \in(a-\delta, a+\delta)$, and $b=f(a)$. Moreover, f is differentiable on ($a-\delta, a+\delta$), and

$$
f^{\prime}(x)=-\frac{F_{x}(x, f(x))}{F_{y}(x, f(x))} \quad \forall x \in(a-\delta, a+\delta) .
$$

In general, let F be a function of n variables $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that $F_{x_{1}}, F_{x_{2}}$, $\cdots, F_{x_{n}}$ are continuous in a neighborhood of $\left(a_{1}, a_{2}, \cdots, a_{n}\right.$. If $F\left(a_{1}, a_{2}, \cdots, a_{n}\right)=0$ and $F_{x_{n}}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \neq 0$, then locally near $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ there exists a unique continuous function f satisfying $F\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)=0$ and $a_{n}=$ $f\left(a_{1}, \cdots, a_{n-1}\right)$. Moreover, for $1 \leqslant j \leqslant n-1$,

$$
\frac{\partial f}{\partial x_{j}}\left(x_{1}, \cdots, x_{n-1}\right)=-\frac{F_{x_{j}}\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)}{F_{x_{n}}\left(x_{1}, \cdots, x_{n-1}, f\left(x_{1}, \cdots, x_{n-1}\right)\right)}
$$

