微積分 MA1002－A 上課筆記（精簡版） 2019．04．11．

Ching－hsiao Arthur Cheng 鄭經敘

Chapter 13

Functions of Several Variables

13.1 Introduction to Functions of Several Variables

Definition 13.1

Let D be a set of ordered pairs of real numbers. If to each ordered pair (x, y) in D there corresponds a unique real number $f(x, y)$, then f is a real-valued function of (two variables) x and y. The set D is the domain of f, and the corresponding set of values for $f(x, y)$ is the range of f. For the function $z=f(x, y), x$ and y are called the independent variables and z is called the dependent variable.

Definition 13.2

Let f, g be real-valued functions of two variables with domain D.

1. The sum of f and g, the difference of f and g and the product of f and g, denoted by $f+g, f-g$ and $f g$, are functions defined on D given by

$$
\begin{array}{rlrl}
(f+g)(x, y) & =f(x, y)+g(x, y) & & \forall(x, y) \in D \\
(f-g)(x, y) & =f(x, y)-g(x, y) & \forall(x, y) \in D \\
(f g)(x, y) & =f(x, y) g(x, y) & & \forall(x, y) \in D
\end{array}
$$

2. The quotient of f and g, denoted by $\frac{f}{g}$, is a function defined on $D \backslash\{(x, y) \in$ $D \mid g(x, y)=0\}$ given by

$$
\frac{f}{g}(x, y)=\frac{f(x, y)}{g(x, y)} \quad \forall(x, y) \in D \text { such that } g(x, y) \neq 0 .
$$

Remark 13.3. A function f of two variables should be given along with its domain. When the domain of a function is not specified, as before the domain should be treated as the collection of all (x, y) such that $f(x, y)$ is meaningful.

Definition 13.4

Let h be a real-valued function of two variables with domain D, and $g: I \rightarrow \mathbb{R}$ be a real-valued function (of one variable) on an interval I. The composite function of g and h, denoted by $g \circ h$, is a function defined on $D \cap\{(x, y) \in D \mid h(x, y) \in I\}$ given by

$$
(g \circ h)(x, y)=g(h(x, y)) \quad \forall(x, y) \in D \text { such that } h(x, y) \in I
$$

Similar concepts such as real-valued functions of three variables, the sum, different, product, quotient and composition of functions of three variables can be defined accordingly.

Definition 13.5

Let D be a set of ordered pairs of real numbers, and $f: D \rightarrow \mathbb{R}$ be a real-valued function of two variables. The graph of f is the set of all points (x, y, z) for which $z=f(x, y)$ and $(x, y) \in D$.

Example 13.5. Let $r>0$ be a real number. The graph of the function $z=f(x, y)=$ $\sqrt{r^{2}-x^{2}-y^{2}}$ is the upper hemi-sphere of the sphere centered at the origin with radius r. On the other hand, the graph of the function $z=g(x, y)=-\sqrt{r^{2}-x^{2}-y^{2}}$ is the lower hemi-sphere of the sphere.

