微積分 MA1002－A 上課筆記（精簡版） 2019．03．12．

Ching－hsiao Arthur Cheng 鄭經㩓

Definition 9．1：Sequence

A sequence of real numbers（or simply a real sequence）is a function $f: \mathbb{N} \rightarrow \mathbb{R}$ ． We usually use f_{n} to denote $f(n)$ ，the n－th term of a sequence $f: \mathbb{N} \rightarrow \mathbb{R}$ ，and this sequence is usually denoted by $\left\{f_{n}\right\}_{n=1}^{\infty}$ or simply $\left\{f_{n}\right\}$ ．

Definition 9.5

A sequence of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ is said to converge to L if for every $\varepsilon>0$ ，there exists $N>0$ such that $\left|a_{n}-L\right|<\varepsilon$ whenever $n \geqslant N$ ．Such an L（must be a real number and）is called a limit of the sequence．If $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to L ，we write $a_{n} \rightarrow x$ as $n \rightarrow \infty$ ．
A sequence of real number $\left\{a_{n}\right\}_{n=1}^{\infty}$ is said to be convergent if there exists $L \in \mathbb{R}$ such that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to L ．If no such L exists we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ does not converge or simply diverges．

Proposition 9.6

If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers，and $a_{n} \rightarrow a$ and $a_{n} \rightarrow b$ as $n \rightarrow \infty$ ，then $a=b$ ．（若收敛則極限唯一）。
－Notation：Since the limit of a convergent sequence is unique，we use $\lim _{n \rightarrow \infty} a_{n}$ to denote this unique limit of a convergent sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ ．

－Completeness of Real Numbers：

One important property of the real numbers is that they are complete．The complete－ ness axiom for real numbers states that＂every bounded sequence of real numbers has a least upper bound and a greatest lower bound＂；that is，if $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence of real numbers，then there exists an upper bound M and a lower bound m of $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that there is no smaller upper bound nor greater lower bound of $\left\{a_{n}\right\}_{n=1}^{\infty}$ ．

Theorem 9．20：Monotone Sequence Property（MSP）

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a monotone sequence of real numbers．Then $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges if and only if $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded．

Remark 9．21．A sequence of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called a Cauchy sequence if for every $\varepsilon>0$ there exists $N>0$ such that

$$
\left|a_{n}-a_{m}\right|<\varepsilon \quad \text { whenever } \quad n, m \geqslant N .
$$

A convergent sequence must be a Cauchy sequence. Moreover, the completeness of real numbers is equivalent to that "every Cauchy sequence of real number converges".

9.2 Series and Convergence

Definition 9.22

The series $\sum_{k=1}^{\infty} a_{k}$ is said to converge to S if the sequence of the partial sum, denoted by $\left\{S_{n}\right\}_{n=1}^{\infty}$ and defined by

$$
S_{n} \equiv \sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

converges to $S . S_{n}$ is called the n-th partial sum of the series $\sum_{k=1}^{\infty} a_{k}$.
When the series converges, we write $S=\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} a_{k}$ is said to be convergent. If $\left\{S_{n}\right\}_{n=1}^{\infty}$ diverges, the series is said to be divergent or diverge. If $\lim _{n \rightarrow \infty} S_{n}=\infty$ (or $-\infty$), the series is said to diverge to ∞ (or $-\infty$).

9.3 The Integral Test and p-Series

9.3.1 The integral test

Suppose that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is obtained by evaluating a non-negative continuous decreasing function $f:[1, \infty) \rightarrow \mathbb{R}$ on \mathbb{N}; that is, $f(n)=a_{n}$. Then

$$
\begin{equation*}
\int_{1}^{n+1} f(x) d x \leqslant S_{n} \equiv \sum_{k=1}^{n} a_{k} \leqslant a_{1}+\int_{1}^{n} f(x) d x \tag{9.3.1}
\end{equation*}
$$

Since the sequence of partial sums $\left\{S_{n}\right\}_{n=1}^{\infty}$ of the series $\sum_{k=1}^{\infty} a_{k}$ is increasing, the completeness of real numbers implies that $\left\{S_{n}\right\}_{n=1}^{\infty}$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ converges.

Theorem 9.31

Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a non-negative continuous decreasing function. The series $\sum_{k=1}^{\infty} f(k)$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ converges.

Example 9.32. The series $\sum_{k=1}^{\infty} \frac{1}{k^{2}+1}$ converges since

$$
\int_{1}^{\infty} \frac{d x}{x^{2}+1}=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x^{2}+1}=\left.\lim _{b \rightarrow \infty} \arctan x\right|_{x=1} ^{x=b}=\lim _{b \rightarrow \infty}(\arctan b-\arctan 1)=\frac{\pi}{4}
$$

and the function $f(x)=\frac{1}{x^{2}+1}$ is non-negative continuous and decreasing on $[1, \infty)$.
Example 9.33. The series $\sum_{k=1}^{\infty} \frac{k}{k^{2}+1}$ diverges since

$$
\int_{1}^{\infty} \frac{x}{x^{2}+1} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{x}{x^{2}+1} d x=\left.\lim _{b \rightarrow \infty} \frac{\ln \left(x^{2}+1\right)}{2}\right|_{x=1} ^{x=b}=\frac{1}{2} \lim _{b \rightarrow \infty}\left[\ln \left(b^{2}+1\right)-\ln 2\right]=\infty
$$

and the function $f(x)=\frac{x}{x^{2}+1}$ is non-negative continuous and decreasing on $[1, \infty)$.
Example 9.34. The series $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ converges since

$$
\begin{aligned}
\int_{2}^{\infty} \frac{d x}{x \ln x} & =\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{d x}{x \ln x} \stackrel{\left(x=e^{u}\right)}{=} \lim _{b \rightarrow \infty} \int_{\ln 2}^{\ln b} \frac{e^{u} d u}{e^{u} \ln e^{u}}=\lim _{b \rightarrow \infty} \int_{\ln 2}^{\ln b} \frac{d u}{u}=\left.\lim _{b \rightarrow \infty} \ln u\right|_{u=\ln 2} ^{u=\ln b} \\
& =\lim _{b \rightarrow \infty}(\ln \ln b-\ln \ln 2)=\infty
\end{aligned}
$$

and the function $f(x)=\frac{1}{x \ln x}$ is non-negative continuous and decreasing on $[2, \infty)$.

9.3.2 p-series

A series of the form

$$
\sum_{k=1}^{\infty} \frac{1}{k^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots
$$

is called a p-series. The series is a function of p, and this function is usually called the Riemann zeta function; that is,

$$
\zeta(s) \equiv \sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

A harmonic series is the p-series with $p=1$, and a general harmonic series is of the form

$$
\sum_{k=1}^{\infty} \frac{1}{a k+b}
$$

By Theorem 8.48 and 9.31 , the p-series converges if and only if $p>1$.

Remark 9.35. It can be shown that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$. In fact, for all integer $k \geqslant 2$, the number $\sum_{k=1}^{\infty} \frac{1}{n^{k}}$ can be computed by hand (even though it is very time consuming).

Remark 9.36. Using (9.3.1), we find that

$$
\ln (n+1) \leqslant \sum_{k=1}^{n} \frac{1}{k} \leqslant 1+\ln n \quad \forall n \in \mathbb{N} .
$$

Therefore, the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by

$$
a_{n}=\sum_{k=1}^{n} \frac{1}{k}-\ln n
$$

is bounded. Moreover,

$$
a_{n}-a_{n+1}=\sum_{k=1}^{n} \frac{1}{k}-\ln n-\sum_{k=1}^{n+1} \frac{1}{k}+\ln (n+1)=\ln \left(1+\frac{1}{n}\right)-\frac{1}{n+1} .
$$

Since the derivative of the function $f(x)=\ln (1+x)-\frac{x}{x+1}$ is positive on $[0,1]$, we find that f is increasing on $[0,1]$; thus

$$
\ln \left(1+\frac{1}{n}\right)-\frac{1}{n+1}=f\left(\frac{1}{n}\right) \geqslant f(0)=\ln 1-\frac{0}{1}=0 \quad \forall n \in \mathbb{N}
$$

which shows that $a_{n} \geqslant a_{n+1}$. Therefore, $\left\{a_{n}\right\}_{n=1}^{\infty}$ is monotone decreasing and bounded from below (by 0). The completeness of real numbers then implies the convergence of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$. The limit

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)
$$

is called Euler's constant.

9.4 Comparisons of Series

When the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is not obtained by $a_{n}=f(n)$ for some decreasing function $f:[1, \infty) \rightarrow \mathbb{R}$, the convergence of the series $\sum_{k=1}^{\infty} a_{k}$ cannot be judged by the convergence of the improper integral $\int_{1}^{\infty} f(x) d x$. To determine the convergence of this kind of series, usually one uses comparison tests.

9.4.1 Direct Comparison Test

Theorem 9.37

Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers, and $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \in \mathbb{N}$.

1. If $\sum_{k=1}^{\infty} b_{k}$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges.
2. If $\sum_{k=1}^{\infty} a_{k}$ diverges, then $\sum_{k=1}^{\infty} a_{k}$ diverges.

Proof. Let S_{n} and T_{n} be the n-th partial sum of the series $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$, respectively; that is,

$$
S_{n}=\sum_{k=1}^{n} a_{k} \quad \text { and } \quad T_{n}=\sum_{k=1}^{n} b_{k}
$$

Then by the assumption that $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \in \mathbb{N}$, we find that $0 \leqslant S_{n} \leqslant T_{n}$ for all $n \in \mathbb{N}$, and $\left\{S_{n}\right\}_{n=1}^{\infty}$ and $\left\{T_{n}\right\}_{n=1}^{\infty}$ are monotone increasing sequences.

1. If $\sum_{k=1}^{\infty} b_{k}$ converges, $\lim _{n \rightarrow \infty} T_{n}=T$ exists; thus $0 \leqslant S_{n} \leqslant T_{n} \leqslant T$ for all $n \in \mathbb{N}$. Since $\left\{S_{n}\right\}_{n=1}^{\infty}$ is increasing, the monotone sequence property shows that $\lim _{n \rightarrow \infty} S_{n}$ exists; thus $\sum_{k=1}^{\infty} a_{k}$ converges.
2. If $\sum_{k=1}^{\infty} a_{k}$ diverges, $\lim _{n \rightarrow \infty} S_{n}=\infty$; thus by the fact that $S_{n} \leqslant T_{n}$ for all $n \in \mathbb{N}$, we find that $\lim _{n \rightarrow \infty} T_{n}=\infty$. Therefore, $\sum_{k=1}^{\infty} b_{k}$ diverges (to ∞).

Remark 9.38. It does not require that $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \in \mathbb{N}$ for the direct comparison test to hold. The condition can be relaxed by that " $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$ " for some N since the sum of the first $N-1$ terms does not affect the convergence of the series.
Example 9.39. The series $\sum_{k=1}^{\infty} \frac{1+\sin k}{k^{2}}$ converges since $\frac{1+\sin n}{n^{2}} \leqslant \frac{2}{n^{2}}$ for all $n \in \mathbb{N}$ and the p-series $\sum_{k=1}^{\infty} \frac{2}{k^{2}}$ converges.

Example 9.40. The series $\sum_{k=1}^{\infty} \frac{1}{2+3^{k}}$ converges since $\frac{1}{2+3^{n}} \leqslant \frac{1}{3^{n}}$ for all $n \in \mathbb{N}$ and the geometric series $\sum_{k=1}^{\infty} \frac{1}{3^{k}}$ converges.

Example 9.41. The series $\sum_{k=1}^{\infty} \frac{1}{2+\sqrt{k}}$ diverges since $\frac{1}{2+\sqrt{n}} \geqslant \frac{1}{3 \sqrt{n}}$ for all $n \in \mathbb{N}$ and the p-series $\sum_{k=1}^{\infty} \frac{1}{3 \sqrt{k}}=\frac{1}{3} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverges.

One can also use the fact that $\frac{1}{2+\sqrt{n}} \geqslant \frac{1}{n}$ for all $n \geqslant 4$ and $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges to conclude that $\sum_{k=1}^{\infty} \frac{1}{2+\sqrt{k}}$ diverges.

