Calculus MA1002－A Midterm 3 Sample

National Central University，May．25， 2019

Problem 1．十小題是非題，觀念題，有倒扣。
Problem 2．定義與定理敘述題。
Problem 3．Assume that f is a continuous function of two variable satisfying that

$$
\lim _{(x, y) \rightarrow(2,1)} \frac{f(x, y)-2 x^{2}+y^{3}}{\sqrt{(x-2)^{2}+(y-1)^{2}}}=0 .
$$

1．Find $f_{x}(2,1)$ and $f_{y}(2,1)$ ．
2．Prove or disprove that f is differentiable at $(2,1)$ ．
（Differentiation of functions of two variables）
Problem 4．Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y(x-y)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Find the directional derivative of f at $(0,0)$ in the direction along which the value of the function f at $(0,0)$ increases most rapidly．（Directional derivatives）

Problem 5．Find the second Taylor polynomial of the function $f(x, y)=\arccos \frac{x}{\sqrt{x^{2}+y^{2}}}$ at $(1,1)$ ． （Chain rule and Taylor＇s polynomial）
Problem 6．Find all relative extrema and saddle points of $f(x, y)=2 x y-\frac{1}{2}\left(x^{4}+y^{4}\right)+1$ using the second derivative test．When a relative extremum is found，determine if it is a relative maximum or a relative minimum．（Relative extrema，saddle points，and the second derivative test）

Problem 7．Let R be the solid in the space bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $x+y+z=4$ ．Find the extreme value of function $w=f(x, y, z)=x y z$ on R ．（Absolute extrema and Lagrange multipliers）

