Calculus MA1002-A Final Exam

National Central University, Jun. 20, 2019

Problem 1. (10\%) Rewrite the iterated integral $\int_{0}^{1}\left[\int_{\sqrt{x}}^{1}\left(\int_{0}^{1-y} f(x, y, z) d z\right) d y\right] d x$ in the order $d x d y d z$.

Solution. Note that the region of integration Q is shown in the following figure

Let R be the projection of Q along the x-axis onto the $y z$-plane. Then R is the triangle given by

$$
R=\{(y, z) \mid 0 \leqslant z \leqslant 1,0 \leqslant y \leqslant 1-z\} .
$$

Therefore,

$$
\int_{0}^{1}\left[\int_{\sqrt{x}}^{1}\left(\int_{0}^{1-y} f(x, y, z) d z\right) d y\right] d x=\int_{0}^{1}\left[\int_{0}^{1-z}\left(\int_{0}^{y^{2}} f(x, y, z) d x\right) d y\right] d z
$$

Problem 2. Let S be the subset of the upper hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ enclosed by the curve C shown in the figure below

where each point of C corresponds to some point $\left(\cos t \sin t, \sin ^{2} t, \cos t\right)$ with $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Find the surface of S via the following steps:

1. (10%) Let R be the region obtained by projecting S onto the $x y$-plane along the z-axis. Suppose that R can be expressed as $R=\left\{(x, y) \mid c \leqslant y \leqslant d, g_{1}(y) \leqslant x \leqslant g_{2}(y)\right\}$. Find c, d and g_{1}, g_{2}.
2. (10%) In polar coordinate (with $(0,0)$ as the pole and x-axis as the polar axis), the region R in the $x y$-plane corresponds to the region R^{\prime} in the $r \theta$-plane

$$
R^{\prime}=\left\{(r, \theta) \mid a \leqslant \theta \leqslant b, h_{1}(\theta) \leqslant r \leqslant h_{2}(\theta)\right\} .
$$

Find a, b and h_{1}, h_{2}.
3. (5%) The surface area of S can be computed by $\iint_{R} f(x, y) d A$. Find $f(x, y)$.
4. (15%) Use polar coordinate as the change of variables to compute $\iint_{R} f(x, y) d A$.
5. (15%) Let D be the solid region above R and below S; that is,

$$
D=\left\{(x, y, z) \mid(x, y) \in R, 0 \leqslant z \leqslant \sqrt{1-x^{2}-y^{2}}\right\} .
$$

Find the volume of D.
Solution. 1. Let (x, y) be a boundary point of R. The $(x, y)=\left(\cos t \sin t, \sin ^{2} t\right)$ for some $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; thus

$$
x^{2}+y^{2}=\cos ^{2} t \sin ^{2} t+\sin ^{4} t=\left(\cos ^{2} t+\sin ^{2} t\right) \sin ^{2} t=\sin ^{2} t=y .
$$

Therefore, the boundary of R consists of points (x, y) satisfying $x^{2}+y^{2}=y$ which shows that R is a disk centered at $\left(0, \frac{1}{2}\right)$ with radius $\frac{1}{2}$. Therefore,

$$
R=\left\{(x, y) \mid 0 \leqslant y \leqslant 1,-\sqrt{y-y^{2}} \leqslant x \leqslant \sqrt{y-y^{2}}\right\} .
$$

2. By the fact that the boundary of R^{\prime} maps to the boundary of R under the change of variables $x=r \cos \theta$ and $y=r \sin \theta$, we find that if (r, θ) is a boundary point of R^{\prime}, then (r, θ) satisfies

$$
r^{2}=r \sin \theta
$$

Therefore, the boundary of R^{\prime} consists of points (r, θ) satisfying $r=\sin \theta$ or $r=0$ in the $r \theta$-plane. Since R locates on the upper half plane, $0 \leqslant \theta \leqslant \pi$, and the center of the disk R corresponds to point $\left(\frac{1}{2}, \frac{\pi}{2}\right)$ in the $r \theta$-plane, we conclude that

$$
R^{\prime}=\{(r, \theta) \mid 0 \leqslant \theta \leqslant \pi, 0 \leqslant r \leqslant \sin \theta\} .
$$

3. Since $\frac{\partial z}{\partial x}=\frac{-x}{\sqrt{1-x^{2}-y^{2}}}$ and $\frac{\partial z}{\partial y}=\frac{-y}{\sqrt{1-x^{2}-y^{2}}}$, the surface area of S is given by

$$
\iint_{R} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial x}\right)^{2}} d A=\iint_{R} \frac{1}{\sqrt{1-x^{2}-y^{2}}} d A
$$

4. Using the polar coordinate as the change of variables,

$$
\begin{aligned}
& \int_{0}^{\pi}\left(\int_{0}^{\sin \theta} \frac{1}{\sqrt{1-r^{2}}} r d r\right) d \theta=\int_{0}^{\pi}\left[\left.\left(-\sqrt{1-r^{2}}\right)\right|_{r=0} ^{r=\sin \theta}\right] d \theta=\int_{0}^{\pi}(1-|\cos \theta|) d \theta \\
& \quad=\pi-2 \int_{0}^{\frac{\pi}{2}} \cos \theta d \theta=\pi-2\left(\left.\sin \theta\right|_{\theta=0} ^{\theta=\frac{\pi}{2}}\right)=\pi-2
\end{aligned}
$$

5. Using the cylindrical coordinate, the volume of D is given by

$$
\begin{align*}
& \iint_{R^{\prime}}\left(\int_{0}^{\sqrt{1-x^{2}-y^{2}}} d z\right) r d(r, \theta)=\int_{0}^{\pi}\left(\int_{0}^{\sin \theta} r \sqrt{1-r^{2}} d r\right) d \theta=\int_{0}^{\pi}\left[\left.\left(-\frac{1}{3}\left(1-r^{2}\right)^{\frac{3}{2}}\right)\right|_{r=0} ^{r=\sin \theta}\right] d \theta \\
& \quad=\frac{1}{3} \int_{0}^{\pi}\left(1-|\cos \theta|^{3}\right) d \theta=\frac{1}{3}\left(\pi-2 \int_{0}^{\frac{\pi}{2}} \cos ^{3} \theta d \theta\right)=\frac{1}{3}\left(\pi-2 \int_{0}^{\frac{\pi}{2}} \frac{\cos 3 \theta+3 \cos \theta}{4} d \theta\right) \\
& \quad=\frac{\pi}{3}-\frac{1}{6}\left[\left.\left(\frac{\sin 3 \theta}{3}+3 \sin \theta\right)\right|_{\theta=0} ^{\theta=\frac{\pi}{2}}\right]=\frac{\pi}{3}-\frac{1}{6}\left(-\frac{1}{3}+3\right)=\frac{\pi}{3}-\frac{4}{9} .
\end{align*}
$$

Problem 3. Let R be the region in the first quadrant of the plane bounded by the curves $x y-x+y=0$ and $x-y=1$ (see the figure below), and $f: R \rightarrow \mathbb{R}$ be defined by $f(x, y)=x^{2} y^{2}(x+y) e^{-(x-y)^{2}}$.

Find $\iint_{R} f(x, y) d A$ by completing the following steps.

1. (10\%) Use the change of variables $x y-x+y=u$ and $x-y=v$. Find the Jacobian of x and y with respect to u and v.
2. (10%) Find the corresponding region R^{\prime} of R in the $u v$-plane under the change of variables above.
3. (15\%) Transform the double integral $\iint_{R} f(x, y) d A$ using the change of variables formula (with this particular change of variables) and compute the double integral.

Solution. 1. Since $x-y=v, u=x y-x+y=x y-v$; thus $x y=u+v$. Therefore,

$$
(x+y)^{2}=(x-y)^{2}+4 x y=v^{2}+4(u+v) .
$$

We note that $x, y \geqslant 0$ in $R, x+y=\sqrt{v^{2}+4 u+4 v}$. Solving for x, y in terms of u, v, we find that

$$
x=g_{1}(u, v)=\frac{v+\sqrt{v^{2}+4 u+4 v}}{2} \quad \text { and } \quad y=g_{2}(u, v)=\frac{-v+\sqrt{v^{2}+4 u+4 v}}{2} .
$$

As a consequence,

$$
\begin{array}{ll}
x_{u}(u, v)=\frac{1}{\sqrt{v^{2}+4 u+4 v}} & x_{v}(u, v)=\frac{1}{2}\left(1+\frac{v+2}{\sqrt{v^{2}+4 u+4 v}}\right), \\
y_{u}(u, v)=\frac{1}{\sqrt{v^{2}+4 u+4 v}} & y_{v}(u, v)=\frac{1}{2}\left(-1+\frac{v+2}{\sqrt{v^{2}+4 u+4 v}}\right),
\end{array}
$$

and the above equalities imply

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left(x_{u} y_{v}-x_{v} y_{u}\right)(u, v)=\frac{-1}{\sqrt{v^{2}+4 u+4 v}} .
$$

Therefore, $R=\{(u, v) \mid 0 \leqslant v \leqslant 1,-v \leqslant u \leqslant 0\}$.
2. The curve $x y-x+y=0$ corresponds to $u=0$, while the lines $x-y=1$ and $y=0$ correspond to $v=1$ and $u+v=0$, respectively; thus if R^{\prime} is the region enclosed by $u=0, v=1$ and $u+v=0$, then $R=g\left(R^{\prime}\right)$.

3. By the change of variables formula,

$$
\begin{aligned}
\int_{R} f(x, y) d A & =\int_{g\left(R^{\prime}\right)} f(x, y) d(x, y)=\int_{R^{\prime}} f\left(g_{1}(u, v), g_{2}(u, v)\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d(u, v) \\
& =\int_{0}^{1} \int_{-v}^{0}(u+v)^{2} e^{-v^{2}} d u d v=\frac{1}{3} \int_{0}^{1} v^{3} e^{-v^{2}} d v \\
& =\frac{1}{6} \int_{0}^{1} w e^{-w} d w=-\left.\frac{1}{6}(w+1) e^{-w}\right|_{w=0} ^{w=1}=-\frac{1}{6}\left(\frac{2}{e}-1\right) .
\end{aligned}
$$

