Calculus MA1002－A Quiz 09

National Central University，June 62019

學號： \qquad姓名： \qquad
Problem 1．（5\％）Evaluate the double integral $\iint_{R} x y d A$ ，where R is the region bounded by line
$y=x-1$ and the parabola $y^{2}=2 x+6$.
Solution．Solving for the points of intersection of the given line and parabola，we find that $(x-1)^{2}=$ $2 x+6$ ；thus $x=5$ or $x=-1$ which implies that the points of intersection is $(5,4)$ and $(-1,-2)$ ． Therefore，the region R can be expressed as $R=\left\{(x, y) \mid-2 \leqslant y \leqslant 4, \frac{y^{2}-6}{2} \leqslant x \leqslant y+1\right\}$ ，and the Fubini Theorem implies that

$$
\begin{aligned}
\iint_{R} x y d A & =\int_{-2}^{4}\left(\int_{\frac{y^{2}-6}{2}}^{y+1} x y d x\right) d y=\int_{-2}^{4}\left(\left.\frac{x^{2} y}{2}\right|_{x=\frac{y^{2}-6}{2}} ^{x=y+1}\right) d y=\frac{1}{2} \int_{-2}^{4}\left[(y+1)^{2} y-\left(\frac{y^{2}-6}{2}\right)^{2} y\right] d y \\
& =\frac{1}{2} \int_{-2}^{4}\left[(y+1)^{3}-(y+1)^{2}-\frac{1}{4}\left(y^{2}-6\right)^{2} y\right] d y \\
& =\left.\frac{1}{2}\left[\frac{(y+1)^{4}}{4}-\frac{(y+1)^{3}}{3}-\frac{1}{24}\left(y^{2}-6\right)^{3}\right]\right|_{y=-2} ^{y=4} \\
& =\frac{1}{2}\left[\frac{625}{4}-\frac{125}{3}-\frac{1000}{24}-\frac{1}{4}+\frac{-1}{3}-\frac{1}{3}\right] \\
& =\frac{1}{2}\left[156-\frac{125}{3}-\frac{125}{3}-\frac{2}{3}\right]=\frac{1}{2} \cdot \frac{216}{3}=36
\end{aligned}
$$

Problem 2．（5\％）Find the surface area of the part of the surface $z=x^{2}+2 y$ that lies above the triangular region T in the $x y$－plane with vertices $(0,0),(1,0)$ ，and $(1,1)$ ．

Solution．Note that the triangle T can be expressed as $T=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant x\}$ ． Therefore，the surface area of interest is

$$
\begin{aligned}
\iint_{T} \sqrt{1+f_{x}(x, y)^{2}+f_{y}(x, y)^{2}} d A & =\int_{0}^{1}\left(\int_{0}^{x} \sqrt{1+4 x^{2}+4} d y\right) d x=\int_{0}^{1} x \sqrt{5+4 x^{2}} d x \\
& =\left.\frac{1}{12}\left(5+4 x^{2}\right)^{\frac{3}{2}}\right|_{x=0} ^{x=1}=\frac{1}{12}\left(9^{\frac{3}{2}}-5^{\frac{3}{2}}\right)=\frac{1}{12}(27-5 \sqrt{5})
\end{aligned}
$$

