Calculus MA1002－A Quiz 01

National Central University，Mar． 142018

學號： \qquad姓名： \qquad

Problem 1．（2pts）Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers．Write down the definition of the statement $\lim _{n \rightarrow \infty} a_{n}=L$ ．
$\lim _{n \rightarrow \infty} a_{n}=L \Leftrightarrow$ for every $\varepsilon>0$ there exists $N>0$ such that $\left|a_{n}-L\right|<\varepsilon$ whenever $n \geqslant N$.
Problem 2．Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers defined recursively by $a_{n+1}=\frac{1}{2+a_{n}}$ with $a_{1}=\frac{1}{2}$ ．Show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to $L \equiv \sqrt{2}-1$ by completing the following：

1．（3pts）Show that $a_{n+1}-L=\frac{L}{2+a_{n}}\left(L-a_{n}\right)$ for all $n \in \mathbb{N}$ and conclude that $\left|a_{n+1}-L\right| \leqslant \frac{L}{2}\left|a_{n}-L\right|$ for all $n \in \mathbb{N}$ ．
2．（2pts）Show that $\left|a_{n}-L\right| \leqslant\left(\frac{L}{2}\right)^{n-1}\left|a_{1}-L\right|$ and conclude that $\lim _{n \rightarrow \infty} a_{n}=L$.
Proof．First we observe $a_{n} \geqslant 0$ for all $n \in \mathbb{N}$ ．Since

$$
\begin{aligned}
a_{n+1}-L & =\frac{1-(\sqrt{2}-1)\left(2+a_{n}\right)}{2+a_{n}}=\frac{3-2 \sqrt{2}-(\sqrt{2}-1) a_{n}}{2+a_{n}}=\frac{(\sqrt{2}-1)^{2}-(\sqrt{2}-1) a_{n}}{2+a_{n}} \\
& =\frac{\sqrt{2}-1}{2+a_{n}}\left(L-a_{n}\right),
\end{aligned}
$$

we find that $\left|a_{n+1}-L\right|=\frac{L}{2+a_{n}}\left|a_{n}-L\right| \leqslant \frac{L}{2}\left|a_{n}-L\right|$ ；thus

$$
\left|a_{n}-L\right|=\frac{L}{2}\left|a_{n-1}-L\right| \leqslant \frac{L}{2} \cdot \frac{L}{2}\left|a_{n-2}-L\right| \leqslant \cdots \leqslant\left(\frac{L}{2}\right)^{n-1}\left|a_{1}-L\right| .
$$

Since $\frac{L}{2}<1$ ，by the squeeze theorem we find that $\lim _{n \rightarrow \infty}\left|a_{n}-L\right|=0$ ．Therefore， $\lim _{n \rightarrow \infty} a_{n}=L$ ．
Problem 3．（3pts）Determine whether the series $\sum_{k=1}^{\infty} \ln \frac{k}{2 k+1}$ converges or not．
Proof．Since $\lim _{n \rightarrow \infty} \ln \frac{n}{2 n+1}=\ln \frac{1}{2}=-\ln 2 \neq 0$ ，we find that the series $\sum_{k=1}^{\infty} \ln \frac{k}{2 k+1}$ must diverge．

