Calculus MA1002-A Quiz 01

National Central University, Mar. 14 2018

學號:______ 姓名:_____

Problem 1. (2pts) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Write down the definition of the statement $\lim_{n\to\infty} a_n = L$.

 $\lim_{n \to \infty} a_n = L \Leftrightarrow \text{for every } \varepsilon > 0 \text{ there exists } N > 0 \text{ such that } |a_n - L| < \varepsilon \text{ whenever } n \ge N.$

Problem 2. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers defined recursively by $a_{n+1} = \frac{1}{2+a_n}$ with $a_1 = \frac{1}{2}$. Show that $\{a_n\}_{n=1}^{\infty}$ converges to $L \equiv \sqrt{2} - 1$ by completing the following:

1. (3pts) Show that $a_{n+1}-L = \frac{L}{2+a_n}(L-a_n)$ for all $n \in \mathbb{N}$ and conclude that $|a_{n+1}-L| \leq \frac{L}{2}|a_n-L|$ for all $n \in \mathbb{N}$.

2. (2pts) Show that $|a_n - L| \leq \left(\frac{L}{2}\right)^{n-1} |a_1 - L|$ and conclude that $\lim_{n \to \infty} a_n = L$.

Proof. First we observe $a_n \ge 0$ for all $n \in \mathbb{N}$. Since

$$a_{n+1} - L = \frac{1 - (\sqrt{2} - 1)(2 + a_n)}{2 + a_n} = \frac{3 - 2\sqrt{2} - (\sqrt{2} - 1)a_n}{2 + a_n} = \frac{(\sqrt{2} - 1)^2 - (\sqrt{2} - 1)a_n}{2 + a_n}$$
$$= \frac{\sqrt{2} - 1}{2 + a_n} (L - a_n),$$

we find that $|a_{n+1} - L| = \frac{L}{2 + a_n} |a_n - L| \le \frac{L}{2} |a_n - L|$; thus

$$|a_n - L| = \frac{L}{2}|a_{n-1} - L| \leq \frac{L}{2} \cdot \frac{L}{2}|a_{n-2} - L| \leq \dots \leq \left(\frac{L}{2}\right)^{n-1}|a_1 - L|$$

Since $\frac{L}{2} < 1$, by the squeeze theorem we find that $\lim_{n \to \infty} |a_n - L| = 0$. Therefore, $\lim_{n \to \infty} a_n = L$. **Problem 3.** (3pts) Determine whether the series $\sum_{k=1}^{\infty} \ln \frac{k}{2k+1}$ converges or not.

Proof. Since $\lim_{n \to \infty} \ln \frac{n}{2n+1} = \ln \frac{1}{2} = -\ln 2 \neq 0$, we find that the series $\sum_{k=1}^{\infty} \ln \frac{k}{2k+1}$ must diverge. \Box