Extra Exercise Problem Set 14

May. 10 2019

Problem 1. In this example we prove the second derivatives test for functions of two variables. Let $R \subseteq \mathbb{R}^2$ be an open region, and $f : R \to \mathbb{R}$ be a function of two variables. Suppose that f has continuous second partial derivatives. For $(x, y), (a, b) \in R$ such that the line segment connecting (x, y) and (a, b) lies in R (that is, $\gamma(t) \equiv (a + t(x - a), b + t(y - b)) \subseteq R$ for all $t \in [0, 1]$), in previous exercise we have show that there exists $(\xi_1, \xi_2) = (a + t_0(x - a), b + t_0(y - b))$, where $0 < t_0 < 1$, such that

$$f(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + \frac{1}{2} [f_{xx}(\xi_1,\xi_2)(x-a)^2 + 2f_{xy}(\xi_1,\xi_2)(x-a)(y-b) + f_{yy}(\xi_1,\xi_2)(y-b)^2]$$
(*)

Let $d(x, y) = f_{xx}(x, y) f_{yy}(x, y) - f_{xy}(x, y)^2$.

1. Show that if d(a,b) > 0 and $f_{xx}(a,b) > 0$, then there exists $\delta > 0$ such that

$$d(x,y) > 0$$
 and $f_{xx}(x,y) > 0$ for all $(x,y) \in D((a,b),\delta)$.

Therefore, if $(x, y) \in D((a, b), \delta)$, the point (ξ_1, ξ_2) validating (\star) satisfies $d(\xi_1, \xi_2) > 0$ and $f_{xx}(\xi_1, \xi_2) > 0$. Similarly, show that if $d(\xi_1, \xi_2) > 0$ and $f_{xx}(\xi_1, \xi_2) < 0$, then there exists $\delta > 0$ such that

$$d(x,y) > 0$$
 and $f_{xx}(x,y) < 0$ for all $(x,y) \in D((a,b),\delta)$.

Therefore, if $(x, y) \in D((a, b), \delta)$, the point (ξ_1, ξ_2) validating (\star) satisfies $d(\xi_1, \xi_2) > 0$ and $f_{xx}(\xi_1, \xi_2) < 0$.

2. Show that if $d(\xi_1, \xi_2) > 0$ and $f_{xx}(\xi_1, \xi_2) < 0$, then

$$f_{xx}(\xi_1,\xi_2)(x-a)^2 + 2f_{xy}(\xi_1,\xi_2)(x-a)(y-b) + f_{yy}(\xi_1,\xi_2)(y-b)^2 \leq 0 \quad \forall (x,y) \in D((a,b),\delta).$$

Similarly, show that if $d(\xi_1, \xi_2) > 0$ and $f_{xx}(\xi_1, \xi_2) > 0$, then

$$f_{xx}(\xi_1,\xi_2)(x-a)^2 + 2f_{xy}(\xi_1,\xi_2)(x-a)(y-b) + f_{yy}(\xi_1,\xi_2)(y-b)^2 \ge 0 \quad \forall (x,y) \in D((a,b),\delta)$$

- 3. Use 2 to conclude the second derivatives test:
 - (a) If (a, b) is a critical point of f and d(a, b) > 0, $f_{xx}(a, b) > 0$, then f attains a relative minimum at (a, b).
 - (b) If (a, b) is a critical point of f and d(a, b) > 0, $f_{xx}(a, b) < 0$, then f attains a relative maximum at (a, b).