Extra Exercise Problem Set 14

Problem 1. In this example we prove the second derivatives test for functions of two variables. Let $R \subseteq \mathbb{R}^{2}$ be an open region, and $f: R \rightarrow \mathbb{R}$ be a function of two variables. Suppose that f has continuous second partial derivatives. For $(x, y),(a, b) \in R$ such that the line segment connecting (x, y) and (a, b) lies in R (that is, $\gamma(t) \equiv(a+t(x-a), b+t(y-b)) \subseteq R$ for all $t \in[0,1])$, in previous exercise we have show that there exists $\left(\xi_{1}, \xi_{2}\right)=\left(a+t_{0}(x-a), b+t_{0}(y-b)\right)$, where $0<t_{0}<1$, such that

$$
\begin{align*}
f(x, y)= & f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
& +\frac{1}{2}\left[f_{x x}\left(\xi_{1}, \xi_{2}\right)(x-a)^{2}+2 f_{x y}\left(\xi_{1}, \xi_{2}\right)(x-a)(y-b)+f_{y y}\left(\xi_{1}, \xi_{2}\right)(y-b)^{2}\right]
\end{align*}
$$

Let $d(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}(x, y)^{2}$.

1. Show that if $d(a, b)>0$ and $f_{x x}(a, b)>0$, then there exists $\delta>0$ such that

$$
d(x, y)>0 \text { and } f_{x x}(x, y)>0 \quad \text { for all }(x, y) \in D((a, b), \delta) .
$$

Therefore, if $(x, y) \in D((a, b), \delta)$, the point $\left(\xi_{1}, \xi_{2}\right)$ validating (\star) satisfies $d\left(\xi_{1}, \xi_{2}\right)>0$ and $f_{x x}\left(\xi_{1}, \xi_{2}\right)>0$. Similarly, show that if $d\left(\xi_{1}, \xi_{2}\right)>0$ and $f_{x x}\left(\xi_{1}, \xi_{2}\right)<0$, then there exists $\delta>0$ such that

$$
d(x, y)>0 \text { and } f_{x x}(x, y)<0 \quad \text { for all }(x, y) \in D((a, b), \delta)
$$

Therefore, if $(x, y) \in D((a, b), \delta)$, the point $\left(\xi_{1}, \xi_{2}\right)$ validating (\star) satisfies $d\left(\xi_{1}, \xi_{2}\right)>0$ and $f_{x x}\left(\xi_{1}, \xi_{2}\right)<0$.
2. Show that if $d\left(\xi_{1}, \xi_{2}\right)>0$ and $f_{x x}\left(\xi_{1}, \xi_{2}\right)<0$, then
$f_{x x}\left(\xi_{1}, \xi_{2}\right)(x-a)^{2}+2 f_{x y}\left(\xi_{1}, \xi_{2}\right)(x-a)(y-b)+f_{y y}\left(\xi_{1}, \xi_{2}\right)(y-b)^{2} \leqslant 0 \quad \forall(x, y) \in D((a, b), \delta)$.
Similarly, show that if $d\left(\xi_{1}, \xi_{2}\right)>0$ and $f_{x x}\left(\xi_{1}, \xi_{2}\right)>0$, then

$$
f_{x x}\left(\xi_{1}, \xi_{2}\right)(x-a)^{2}+2 f_{x y}\left(\xi_{1}, \xi_{2}\right)(x-a)(y-b)+f_{y y}\left(\xi_{1}, \xi_{2}\right)(y-b)^{2} \geqslant 0 \quad \forall(x, y) \in D((a, b), \delta) .
$$

3. Use 2 to conclude the second derivatives test:
(a) If (a, b) is a critical point of f and $d(a, b)>0, f_{x x}(a, b)>0$, then f attains a relative minimum at (a, b).
(b) If (a, b) is a critical point of f and $d(a, b)>0, f_{x x}(a, b)<0$, then f attains a relative maximum at (a, b).
