Extra Exercise Problem Set 13

May. 3 2019

Problem 1. Let $R \subseteq \mathbb{R}^2$ be an open region, and $f : R \to \mathbb{R}$ be a function of two variables. Suppose that all the k-th partial derivatives of f are continuous for $0 \le k \le n+1$. For $(x, y), (a, b) \in R$, let $\gamma(t) = t(x, y) + (1-t)(a, b)$ and define $g(t) = (f \circ \gamma)(t) = f(a + t(x - a), b + t(y - b))$. Assume that $\gamma(t) \in R$ for all $t \in [0, 1]$.

1. Show (by induction) that for $1 \leq k \leq n+1$,

$$g^{(k)}(t) = \sum_{j=0}^{k} C_{j}^{k} \frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}} \left(a + t(x-a), b + t(y-b) \right) (x-a)^{k-j} (y-b)^{j}.$$
 (*)

You may need Pascal's theorem $C_j^{\ell} + C_{j-1}^{\ell} = C_j^{\ell+1}$ for all $1 \leq j \leq \ell$.

2. Show (by Taylor's theorem) that

$$f(x,y) = \sum_{k=0}^{n} \frac{1}{k!} \sum_{j=0}^{k} C_{j}^{k} \frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}} (a,b) (x-a)^{k-j} (y-b)^{j} + R_{n}(x,y) , \qquad (\star \star)$$

Note that g(1) = f(x, y) and g(0) = f(a, b).

3. The function $\sum_{k=0}^{n} \frac{1}{k!} \sum_{j=0}^{k} C_{j}^{k} \frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}} (a, b) (x-a)^{k-j} (y-b)^{j}$ is called the *n*-th Taylor polynomial

for f at (a, b). Write down the second and third Taylor polynomial without using the Σ notation.

4. Find the third Taylor polynomial for $f(x, y) = \exp(x^2 + 2y)$ and $g(x, y) = \sin(xy)$ at (0, 0).