Extra Exercise Problem Set 10

Mar. 29 2019

Problem 1.

1. Prove that

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots + x^n + \dots \qquad \forall x \in (-1,1)$$

using the fact that

$$\frac{1-x^{n+1}}{1-x} = 1 + x + x^2 + \dots + x^n = \sum_{k=0}^n x^k \qquad \forall x \neq 1.$$
 (*)

2. Use (\star) to show that

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k} \qquad \forall x \in (-1,1) \,.$$

Problem 2. Let $f: (-r,r) \to \mathbb{R}$ be *n*-times differentiable at 0, and $P_n(x)$ be the *n*-th Maclaurin polynomial for f.

- 1. Show that if $g(x) = x^{\ell} f(x^m)$ for some positive integers m and ℓ , then the $(mn+\ell)$ -th Maclaurin polynomial for g is $x^{\ell} P_n(x^m)$.
- 2. Show that if $g(x) = x^{\ell} f(-x^m)$ for some positive integer m and ℓ , then the $(mn+\ell)$ -th Maclaurin polynomial for g is $x^{\ell} P_n(-x^m)$.
- 3. Find the (2*n*)-th Maclaurin polynomial for the function $y = \frac{1}{1+x^2}$.